Perfectly matched layer termination for finite-element meshes: Implementation and application

被引:0
|
作者
Botros, YY [1 ]
Volakis, JL [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
关键词
finite-element methods; matched layer termination; microstrip line; spiral inductor;
D O I
10.1002/(SICI)1098-2760(19991105)23:3<166::AID-MOP11>3.3.CO;2-M
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Perfectly matched layer (PML) absorbers deteriorate the condition of the resulting finite-element sparse systems. Therefore, poor convergence scenarios are observed when an iterative solver is employed. In this work. we show that, by choosing the PML parameters in an optimal manner, substantial speedup in the solution convergence is achieved without affecting PML absorption. A robust preconditioned solver with nearly no breakdown possibilities is suggested, implemented, and tested for two microwave circuit applications. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:166 / 172
页数:7
相关论文
共 50 条
  • [21] A two-dimensional finite element formulation of the perfectly matched layer
    Polycarpou, AC
    Lyons, MR
    Balanis, CA
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (09): : 338 - 340
  • [22] An Efficient Unsplit Perfectly Matched Layer for Finite-Element Time-Domain Modeling of Elastodynamics in Cylindrical Coordinates
    Feng-xi Zhou
    Li-ye Wang
    Pure and Applied Geophysics, 2020, 177 : 4345 - 4363
  • [23] An Efficient Unsplit Perfectly Matched Layer for Finite-Element Time-Domain Modeling of Elastodynamics in Cylindrical Coordinates
    Zhou, Feng-xi
    Wang, Li-ye
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (09) : 4345 - 4363
  • [24] A finite-element algorithm with a perfectly matched layer boundary condition for seismic modelling in a diffusive-viscous medium
    Zhao, Haixia
    Xu, Wenhao
    Gao, Jinghuai
    Zhang, Yijie
    Yan, Wenjing
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2022, 19 (01) : 51 - 66
  • [25] Finite-element time-domain beam propagation method with perfectly matched layer for electron waveguide simulations
    Gotoh, Hitoshi
    Koshiba, Masanori
    Tsuji, Yasuhide
    IEICE ELECTRONICS EXPRESS, 2011, 8 (16): : 1361 - 1366
  • [26] Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer
    Dalkhani, Amin Rahimi
    Javaherian, Abdolrahim
    Basir, Hadi Mahdavi
    WAVES IN RANDOM AND COMPLEX MEDIA, 2018, 28 (02) : 367 - 388
  • [27] Convolution perfectly matched layer for the Finite-Element Time-Domain method modeling of Ground Penetrating Radar
    Feng De-Shan
    Wang Xun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (01): : 413 - 423
  • [28] Comparison of finite difference and mixed finite element methods for perfectly matched layer models
    Bokil, V. A.
    Buksas, M. W.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (04) : 806 - 826
  • [29] Quadrangular refinements of convex polygons with an application to finite-element meshes
    Müller-Hannemann, M
    Weihe, K
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2000, 10 (01) : 1 - 40
  • [30] Surface roughness in finite-element meshes : application to plasmonic nanostructures
    Loth, Fabian
    Kiel, Thomas
    Busch, Kurt
    Kristensen, Philip Trost
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (03) : B1 - B7