Two-Dimensional Patterns of Poly(N-isopropylacrylamide) Microgels to Spatially Control Fibroblast Adhesion and Temperature-Responsive Detachment

被引:44
|
作者
Tsai, Hsin-Yi [1 ]
Vats, Kanika [2 ]
Yates, Matthew Z. [1 ]
Benoit, Danielle S. W. [1 ,2 ,3 ,4 ]
机构
[1] Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14627 USA
[3] Univ Rochester, Med Ctr, Ctr Musculoskeletal Res, Rochester, NY 14627 USA
[4] Univ Rochester, Med Ctr, Dept Orthopaed, Rochester, NY 14627 USA
基金
美国国家卫生研究院;
关键词
VOLUME PHASE-TRANSITION; CELL SHEET DETACHMENT; N-ISOPROPYLACRYLAMIDE; STRIPE PATTERN; COMBINED AFM; SURFACES; TISSUE; FILMS; PARTICLES; ATTACHMENT;
D O I
10.1021/la400971g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoresponsive poly(N-isopropyl acrylamide) (PNIPAM) microgels were patterned on polystyrene substrates via dip coating, creating cytocompatible substrates that provided spatial control over cell adhesion. This simple dip-coating method, which exploits variable substrate withdrawal speeds forming particle suspension stripes of densely packed PNIPAM microgels, while Spacings between the stripes contained sparsely distributed PNIPAM microgels. The assembly of three different PNIPAM microgel patterns, namely, patterns composed of 50 mu m stripe/50 mu m spacing, 50 mu m stripe/100 mu m spacing, and 100 mu m stripe/100 mu m spacing, was verified using high-resolution optical micrographs and Image) analysis. PNIPAM microgels existed as monolayers within stripes and spacings, as revealed by atomic force microscopy (AFM). Upon cell seeding on PNIPAM micropatterned substrates, NIH3T3 fibroblast cells preferentially adhered within spacings to form cell patterns. Three days after cell seeding, cells proliferated to form confluent cell layers. The thermoresponsiveness of the underlying PNIPAM microgels was then utilized to recover fibroblast cell sheets from substrates simply by lowering the temperature without disrupting the underlying PN1PAM microgel patterns. Harvested cell sheets similar to these have been used for multiple tissue engineering applications. Also, this simple, low-cost, template-free dip-coating technique can be utilized to micropattern multifunctional PNIPAM microgels, generating complex stimuli-responsive substrates to study cell-material interactions and allow drug delivery to cells in a spatially and temporally controlled manner.
引用
收藏
页码:12183 / 12193
页数:11
相关论文
共 50 条
  • [41] pH/temperature-responsive semi-IPM hydrogels composed of alginate and poly(N-isopropylacrylamide)
    Ju, HK
    Kim, SY
    Kim, SJ
    Lee, YM
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (05) : 1128 - 1139
  • [42] Preparation and temperature-responsive behavior of crosslinked polymers between poly(N-isopropylacrylamide) and natural rubber
    Pattaraporn Nuntahirun
    Oraphin Yamamoto
    Peerasak Paoprasert
    Macromolecular Research, 2016, 24 : 816 - 823
  • [43] Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica
    Lakhiari, H
    Okano, T
    Nurdin, N
    Luthi, C
    Descouts, P
    Muller, D
    Jozefonvicz, J
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1998, 1379 (03): : 303 - 313
  • [44] TEMPERATURE-RESPONSIVE SHRINKING KINETICS OF POLY(N-ISOPROPYLACRYLAMIDE) COPOLYMER GELS WITH HYDROPHILIC AND HYDROPHOBIC COMONOMERS
    KANEKO, Y
    YOSHIDA, R
    SAKAI, K
    SAKURAI, Y
    OKANO, T
    JOURNAL OF MEMBRANE SCIENCE, 1995, 101 (1-2) : 13 - 22
  • [45] Characterization of poly(N-isopropylacrylamide) gel grafted polydimethylsiloxane as temperature-responsive cell culture substrate
    Akiyama, Yoshikatsu
    Matsuyama, Miki
    Takeda, Naoya
    Yamato, Masayuki
    Okano, Teruo
    2016 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2016,
  • [46] Temperature-responsive multilayer microgels of poly(N-vinylcaprolactam)
    Tedjo, Chrysanty
    Kozlovskaya, Veronika
    Chen, Jun
    Liang, Xing
    Kharlampieva, Eugenia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [47] Microstructure and rheological properties of thermo-responsive poly (N-isopropylacrylamide) microgels
    Tan, B. H.
    Pelton, R. H.
    Tam, K. C.
    POLYMER, 2010, 51 (14) : 3238 - 3243
  • [48] pH- and temperature-responsive poly(aspartic acid)-l-poly (N-isopropylacrylamide) conetwork hydrogel
    Nemethy, Arpad
    Solti, Katalin
    Kiss, Lorand
    Gyarmati, Benjamin
    Deli, Maria A.
    Csanyi, Erzsebet
    Szilagyi, Andras
    EUROPEAN POLYMER JOURNAL, 2013, 49 (09) : 2392 - 2403
  • [49] Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels
    Obeso-Vera, Claudia
    Cornejo-Bravo, Jose M.
    Serrano-Medina, Aracely
    Licea-Claverie, Angel
    POLYMER BULLETIN, 2013, 70 (02) : 653 - 664
  • [50] Two-Dimensional Crystallization of Poly(N-isopropylacrylamide)-Capped Gold Nanoparticles
    Wang, Wenjie
    Lawrence, Jack J.
    Bu, Wei
    Zhang, Honghu
    Vaknin, David
    LANGMUIR, 2018, 34 (28) : 8374 - 8378