Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation

被引:17
|
作者
Lee, Moon Hwan [1 ]
Lew, Hah Min [1 ,2 ]
Youn, Sangyeon
Kim, Tae [3 ]
Hwang, Jae Youn [4 ]
机构
[1] Daegu Gyeongbuk Institue Sci & Technol DGIST, Dept Elect Engn & Comp Sci, Daegu 42988, South Korea
[2] KLleon R&D Ctr, Deep Learning Res Team, Seoul 04637, South Korea
[3] Gwangju Inst Sci & Technol, Dept Biomed Sci & Engn, Gwangju 61005, South Korea
[4] Daegu Gyeongbuk Inst Sci & Technol, Dept Elect Engn & Comp Sci, Interdisciplinary Studies Artificial Intelligence, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
2-D arrays; acoustic hologram; autoencoder; deep learning; holographic lens; ALGORITHM; ARRAY; IMAGE;
D O I
10.1109/TUFFC.2022.3219401
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorithms show limited performance in the fast and accurate generation of acoustic holograms, thus hindering the development of novel applications. We here propose a deep learning-based framework to achieve fast and accurate acoustic hologram generation. The framework has an autoencoder-like architecture; thus, the unsupervised training is realized without any ground truth. For the framework, we demonstrate a newly developed hologram generator network, the holographic ultrasound generation network (HU-Net), which is suitable for unsupervised learning of hologram generation, and a novel loss function that is devised for energy-efficient holograms. Furthermore, for considering various hologram devices (i.e., ultrasound transducers), we propose a physical constraint (PC) layer. Simulation and experimental studies were carried out for two different hologram devices, such as a 3-D printed lens, attached to a single element transducer, and a 2-D ultrasound array. The proposed framework was compared with the iterative angular spectrum approach (IASA) and the state-of-the-art (SOTA) iterative optimization method, Diff-PAT. In the simulation study, our framework showed a few hundred times faster generation speed, along with comparable or even better reconstruction quality, than those of IASA and Diff-PAT. In the experimental study, the framework was validated with 3-D printed lenses fabricated based on different methods, and the physical effect of the lenses on the reconstruction quality was discussed. The outcomes of the proposed framework in various cases (i.e., hologram generator networks, loss functions, and hologram devices) suggest that our framework may become a very useful alternative tool for other existing acoustic hologram applications, and it can expand novel medical applications.
引用
收藏
页码:3353 / 3366
页数:14
相关论文
共 50 条
  • [21] A Fast Accurate Deep Learning Framework for Prediction of All Cancer Types
    Fadel, Magdy M.
    Elseddeq, Nadia G.
    Arnous, Reham
    Ali, Zainab H.
    Eldesouky, Ali I.
    IEEE Access, 2022, 10 : 122586 - 122600
  • [22] A Fast Accurate Deep Learning Framework for Prediction of All Cancer Types
    Fadel, Magdy M.
    Elseddeq, Nadia G.
    Arnous, Reham
    Ali, Zainab H.
    Eldesouky, Ali I.
    IEEE ACCESS, 2022, 10 : 122586 - 122600
  • [23] Deep Learning-Based Corresponding Points Fast Matching
    Orumi, Mohammad Ali Bagheri
    Famouri, Mahmoud
    Azimifar, Zohreh
    Nazemi, Azadeh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 256 - 260
  • [24] Fast and Accurate Library Generation Leveraging Deep Learning for OCV Modelling
    Naswali, Eunice
    Kim, Namhoon
    Chandran, Pravin
    PROCEEDINGS OF THE 2021 TWENTY SECOND INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2021), 2021, : 349 - 354
  • [25] A Deep Learning-Based Framework for Retinal Disease Classification
    Choudhary, Amit
    Ahlawat, Savita
    Urooj, Shabana
    Pathak, Nitish
    Lay-Ekuakille, Aime
    Sharma, Neelam
    HEALTHCARE, 2023, 11 (02)
  • [26] A Deep Reinforcement Learning-Based Framework for Content Caching
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [27] Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions
    Zhan, Haolin
    Zhu, Xin
    Qiao, Zhiwei
    Hu, Jianming
    ANALYTICA CHIMICA ACTA, 2023, 1244
  • [28] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [29] Deep Learning-Based Cellular Random Access Framework
    Jang, Han Seung
    Lee, Hoon
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7503 - 7518
  • [30] ClusterX: a novel representation learning-based deep clustering framework for accurate visual inspection in virtual screening
    Chen, Sikang
    Gao, Jian
    Chen, Jiexuan
    Xie, Yufeng
    Shen, Zheyuan
    Xu, Lei
    Che, Jinxin
    Wu, Jian
    Dong, Xiaowu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)