Efficient Nonlinear Filtering of Multiscale Systems with Specific Structure

被引:0
|
作者
Beeson, Ryne [1 ]
Namachchivaya, N. Sri [2 ]
机构
[1] Univ Illinois, Aerosp Engn, Urbana, IL 61820 USA
[2] Univ Waterloo, Appl Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PARTICLE FILTERS; STRATEGIES; REDUCTION;
D O I
10.23919/fusion43075.2019.9011425
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to build on efficient nonlinear filtering techniques of multiscale dynamical systems by focusing on the case where the multiscale systems of interest have specific structure and properties, that can be exploited to reduce computational runtime while maintaining a fixed accuracy. We use ideas previously implemented in deterministic and stochastic parameterizations to shift computational work related to resolving transition densities and integrations against these densities to an offline calculation, as opposed to schemes like the heterogenous multiscale method, which is an inherently online computation. The technique is independent of the ensemble based filter chosen, as the contributions effect the predictor step of the filtering algorithm. We extended these techniques to a nudged particle filter that excels when the dynamical system is chaotic and compare against a standard particle filter and one using the heterogenous multiscale method on the Lorenz 1996 atmospheric test problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nonlinear filtering for a kind of divisible systems
    Song, Yixuan
    Li, Ruiguang
    Ning, Zijian
    Feng, Xiaoliang
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 456 - 459
  • [22] H∞ Filtering for Nonlinear Singular Systems
    Aliyu, M. D. S.
    Boukas, El-Kebir
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2395 - 2404
  • [23] Robust/H∞, filtering for nonlinear systems
    McEneaney, WM
    SYSTEMS & CONTROL LETTERS, 1998, 33 (05) : 315 - 325
  • [24] Filtering method for nonlinear systems with constraints
    Wang, LS
    Chiang, YT
    Chang, FR
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2002, 149 (06): : 525 - 531
  • [25] A THEOREM ON THE STABILITY OF NONLINEAR FILTERING SYSTEMS
    MIYAHARA, Y
    LECTURE NOTES IN MATHEMATICS, 1988, 1299 : 314 - 325
  • [26] H∞ filtering for nonlinear stochastic systems
    Berman, N
    Shaked, U
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 749 - 754
  • [27] Anisotropic filtering with nonlinear structure tensors
    Castano-Moraga, Carlos-Alberto
    Ruiz-Alzola, Juan
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
  • [28] H∞ Filtering for a Class of Nonlinear Systems
    Pan, Yingnan
    Sun, Xingjian
    Gao, Yabin
    Lam, H. K.
    Li, Hongyi
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 238 - 241
  • [29] OPTIMUM FILTERING WITH A CLASS OF NONLINEAR SYSTEMS
    HADDAD, AH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (03) : 289 - &
  • [30] Filtering of nonlinear stochastic feedback systems
    Carravetta, F
    Germani, A
    Liptser, RS
    Manes, C
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4270 - 4273