Computing Trading Strategies Based on Financial Sentiment Data Using Evolutionary Optimization

被引:7
|
作者
Hochreiter, Ronald [1 ]
机构
[1] WU Vienna Univ Econ & Business, Dept Finance Accounting & Stat, Vienna, Austria
关键词
Evolutionary optimization; Sentiment analysis; Technical trading; Portfolio optimization;
D O I
10.1007/978-3-319-19824-8_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we apply evolutionary optimization techniques to compute optimal rule-based trading strategies based on financial sentiment data. The sentiment data was extracted from the social media service StockTwits to accommodate the level of bullishness or bearishness of the online trading community towards certain stocks. Numerical results for all stocks from the Dow Jones Industrial Average (DJIA) index are presented and a comparison to classical risk-return portfolio selection is provided.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
  • [41] Modelling and Trading the DJIA Financial Index Using Neural Networks Optimized with Adaptive Evolutionary Algorithms
    Theofilatos, Konstantinos
    Karathanasopoulos, Andreas
    Sermpinis, Georgios
    Amorgianiotis, Thomas
    Georgopoulos, Efstratios
    Likothanassis, Spiros
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, 2012, 311 : 453 - +
  • [42] Hybrid optimization-based deep learning classifier for sentiment classification using review data
    Jyotsna Anthal
    Bhavna Sharma
    Jatinder Manhas
    Social Network Analysis and Mining, 13
  • [43] Hybrid optimization-based deep learning classifier for sentiment classification using review data
    Anthal, Jyotsna
    Sharma, Bhavna
    Manhas, Jatinder
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [45] Strategies for optimization in behavioral and ecological research using evolutionary computation
    Artita, Kimberly S.
    Polnaszek, Timothy
    Sears, Michael W.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2009, 49 : E195 - E195
  • [46] Parameters tuning and optimization for Reinforcement Learning algorithms using Evolutionary Computing
    Fernandez, Franklin Cardenoso
    Caarls, Wouter
    PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER SCIENCE (INCISCOS 2018), 2018, : 301 - 305
  • [47] Magnetic Design Optimization Approach Using Design of Experiments With Evolutionary Computing
    Di Barba, P.
    Dughiero, F.
    Forzan, M.
    Sieni, E.
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [48] A hybrid optimization approach using Evolutionary Computing and Map Reduce Architecture
    Lohani, Bhanu Prakash
    Singh, Ajit
    Bibhu, Vimal
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [49] Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification
    Antonelli, Michela
    Bernardo, Dario
    Hagras, Hani
    Marcelloni, Francesco
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (02) : 249 - 264
  • [50] Sentiment Analysis of Customers' Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution
    Obiedat, Ruba
    Qaddoura, Raneem
    Al-Zoubi, Ala' M.
    Al-Qaisi, Laila
    Harfoushi, Osama
    Alrefai, Mo'ath
    Faris, Hossam
    IEEE ACCESS, 2022, 10 : 22260 - 22273