POSITIVE STOCHASTIC MATRICES AS CONTRACTION MAPS

被引:0
|
作者
Shih, Mau-Hsiang [1 ]
Takahashi, Wataru [2 ,3 ,4 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Yokohama, Kanagawa 2238521, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
关键词
Stochastic matrix; contraction; fixed point;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if A = (a(ij)) is an n x n positive stochastic matrix, then A is a contraction from the unit (n - 1)-simplex into itself with respect to the l(1) norm, with the contraction constant 1/2 max(j not equal j') (n)Sigma(i=1) vertical bar a(ij) - a(ij')vertical bar.
引用
收藏
页码:649 / 651
页数:3
相关论文
共 50 条
  • [31] Some Properties of Strictly Positive Doubly Stochastic Matrices
    Ebrahimpoor, Hossein
    Eftekhari, Noha
    Eshkaftaki, Ali Bayati
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [32] Some Properties of Strictly Positive Doubly Stochastic Matrices
    Hossein Ebrahimpoor
    Noha Eftekhari
    Ali Bayati Eshkaftaki
    Results in Mathematics, 2023, 78
  • [33] Mean inequalities for sector matrices involving positive linear maps
    Malekinejad, Somayeh
    Khosravi, Maryam
    Sheikhhosseini, Alemeh
    POSITIVITY, 2022, 26 (03)
  • [34] Maps on positive definite matrices preserving Bregman and Jensen divergences
    Molnar, Lajos
    Pitrik, Jozsef
    Virosztek, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 : 174 - 189
  • [35] Mean inequalities for sector matrices involving positive linear maps
    Somayeh Malekinejad
    Maryam Khosravi
    Alemeh Sheikhhosseini
    Positivity, 2022, 26
  • [36] ON CONTRACTION MAPS
    SASTRY, KPR
    NAIDU, SVR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (12): : 1417 - 1419
  • [37] STOCHASTIC MATRICES WITH A NON-TRIVIAL GREATEST POSITIVE ROOT
    BRAUER, A
    DUKE MATHEMATICAL JOURNAL, 1960, 27 (03) : 291 - 295
  • [38] POSITIVE DEFINITE DOUBLY STOCHASTIC MATRICES AND EXTREME-POINTS
    CHRISTENSEN, JPR
    FISCHER, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 82 : 123 - 132
  • [39] Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras
    Gowda, M. Seetharama
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 528 : 40 - 61
  • [40] Choi matrices, norms and entanglement associated with positive maps on matrix algebras
    Skowronek, Lukasz
    Stormer, Erling
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (02) : 639 - 647