Algorithm for computing minimum distance

被引:2
|
作者
Garcia-Villalba, LJ
Rodriguez-Palánquex, MC
Montoya-Vitini, F
机构
[1] CSIC, Inst Fis Aplicada, Dept Tratamiento Informac & Codificac, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Escuela Univ Estadist, Secc Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
D O I
10.1049/el:19991017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new class of curves, the so-called quasi-Hermitian curves, on F-q (with q = 2(j)) are presented. An algorithm which enables the exact minimum distance for the corresponding Goppa codes to be determined is also presented. This work leads to the possibility of constructing new versions of such codes.
引用
收藏
页码:1534 / 1535
页数:2
相关论文
共 50 条
  • [11] An algorithm for computing the distance to instability
    He, C
    Watson, GA
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) : 101 - 116
  • [12] AN ALGORITHM FOR COMPUTING THE DISTANCE TO UNCONTROLLABILITY
    ELSNER, L
    HE, C
    SYSTEMS & CONTROL LETTERS, 1991, 17 (06) : 453 - 464
  • [13] Computing the Minimum Distance of Nonbinary LDPC Codes
    Liu, Lei
    Huang, Jie
    Zhou, Wuyang
    Zhou, Shengli
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (07) : 1753 - 1758
  • [14] Computing the minimum distance between two ellipsoids
    Chen, XD
    Yong, JH
    Xiong, XC
    Zheng, GQ
    Sun, JG
    CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 403 - 404
  • [15] An algorithm for computing the minimum distance between two convex polyhedra in three-dimensional space
    Liu Hui
    Jin Hanjun
    KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 313 - 317
  • [16] Computing the minimum distance between a point and a NURBS curve
    Chen, Xiao-Diao
    Yong, Jun-Hai
    Wang, Guozhao
    Paul, Jean-Claude
    Xu, Gang
    COMPUTER-AIDED DESIGN, 2008, 40 (10-11) : 1051 - 1054
  • [17] A Graphical Model for computing the Minimum Cost Transposition Distance
    Farnoud, Farzad
    Chen, Chien-Yu
    Milenkovic, Olgica
    Kashyap, Navin
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [18] Computing minimum bundling distance of a set of line segments
    Wang, Xiaoting
    Yang, Chenglei
    2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), 2015, : 233 - 235
  • [19] Computing the minimum distance between a point and a curve on mesh
    Zhu, Fenying
    Liu, Bin
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2015, 15 (01) : 13 - 22
  • [20] ON COMPUTING THE MINIMUM DISTANCE FOR FASTER THAN NYQUIST SIGNALING
    HAJELA, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) : 289 - 295