Evaluating wireless carrier consolidation using semiparametric demand estimation

被引:16
|
作者
Bajari, Patrick [2 ,3 ]
Fox, Jeremy T. [1 ]
Ryan, Stephen P. [3 ,4 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Minnesota, Minneapolis, MN USA
[3] Natl Bur Econ Res, Cambridge, MA 02138 USA
[4] MIT, Cambridge, MA 02139 USA
来源
QME-QUANTITATIVE MARKETING AND ECONOMICS | 2008年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
Market share ranks; Semiparametric; Demand estimation; Amazon; Mergers; Antitrust; Telecommunications; Mobile phones; Online; Discrete choice;
D O I
10.1007/s11129-008-9044-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
The US mobile phone service industry has dramatically consolidated over the last two decades. One justification for consolidation is that merged firms can provide consumers with larger coverage areas at lower costs. We estimate the willingness to pay for national coverage to evaluate this justification for past consolidation. As market level quantity data are not publicly available, we devise an econometric procedure that allows us to estimate the willingness to pay using market share ranks collected from the popular online retailer Amazon. Our semiparametric maximum score estimator controls for consumers' heterogeneous preferences for carriers, handsets and minutes of calling time. We find that national coverage is strongly valued by consumers, providing an efficiency justification for across-market mergers. The methods we propose can estimate demand for other products using data from online retailers where product ranks, but not quantities, are observed.
引用
收藏
页码:299 / 338
页数:40
相关论文
共 50 条
  • [41] Blind estimation of large carrier frequency offset in wireless OFDM systems
    Al-Dweik, A.
    Hamila, R.
    Renfors, M.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, 56 (02) : 965 - 968
  • [42] Evaluating Automated Demand Responsive Transit Using Microsimulation
    Oh, Simon
    Seshadri, Ravi
    Le, Diem-Trinh
    Zegras, P. Christopher
    Ben-Akiva, Moshe E.
    IEEE ACCESS, 2020, 8 (08): : 82551 - 82561
  • [43] ESTIMATION OF DEMAND SYSTEMS USING INFORMATIVE PRIORS
    CHALFANT, JA
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1993, 75 (05) : 1200 - 1205
  • [44] Climatic Influences on Agricultural Drought Risks Using Semiparametric Kernel Density Estimation
    Gonzalez Cruz, Marangely
    Hernandez, E. Annette
    Uddameri, Venkatesh
    WATER, 2020, 12 (10)
  • [45] SEMIPARAMETRIC ESTIMATION OF RANDOM EFFECTS USING THE COX MODEL BASED ON THE EM ALGORITHM
    KLEIN, JP
    BIOMETRICS, 1992, 48 (03) : 795 - 806
  • [46] Semiparametric estimation in regression with missing covariates using single-index models
    Zhuoer Sun
    Suojin Wang
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 1201 - 1232
  • [47] Estimation of the 2-sample hazard ratio function using a semiparametric model
    Yang, Song
    Prentice, Ross L.
    BIOSTATISTICS, 2011, 12 (02) : 354 - 368
  • [48] Semiparametric estimation of multinomial discrete-choice models using a subset of choices
    Fox, Jeremy T.
    RAND JOURNAL OF ECONOMICS, 2007, 38 (04): : 1002 - 1019
  • [49] Semiparametric estimation in regression with missing covariates using single-index models
    Sun, Zhuoer
    Wang, Suojin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (05) : 1201 - 1232
  • [50] Semiparametric estimation for nonparametric frailty models using nonparametric maximum likelihood approach
    Chee, Chew-Seng
    Ha, Il Do
    Seo, Byungtae
    Lee, Youngjo
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (11) : 2485 - 2502