Topological invariance of the Hall conductance and quantization

被引:0
|
作者
Bracken, Paul [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78540 USA
来源
MODERN PHYSICS LETTERS B | 2015年 / 29卷 / 24期
关键词
Conductance; Hall; torus; fractional; Kubo; quantization; FRACTIONAL QUANTIZATION;
D O I
10.1142/S0217984915501353
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a U(1) principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of e(2)/h. The formalism can be extended to deduce the fractional conductivity as well.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Hall conductance and topological invariant for open systems
    Shen, H. Z.
    Wang, W.
    Yi, X. X.
    SCIENTIFIC REPORTS, 2014, 4
  • [22] QUANTIZATION OF THE HALL CONDUCTANCE FOR GENERAL, MULTIPARTICLE SCHRODINGER HAMILTONIANS
    AVRON, JE
    SEILER, R
    PHYSICAL REVIEW LETTERS, 1985, 54 (04) : 259 - 262
  • [23] On the Accuracy of Conductance Quantization in Spin-Hall Insulators
    Konyzheva, S. K.
    Tikhonov, E. S.
    Khrapai, V. S.
    JETP LETTERS, 2019, 109 (02) : 92 - 95
  • [24] QUANTIZATION OF THE HALL CONDUCTANCE AND DELOCALIZATION IN ERGODIC LANDAU HAMILTONIANS
    Germinet, Francois
    Klein, Abel
    Schenker, Jeffrey H.
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (08) : 1045 - 1080
  • [25] A different perspective on the history of the proof of Hall conductance quantization
    Hastings, Matthew B.
    NATURE REVIEWS PHYSICS, 2020, 2 (12) : 723 - 723
  • [26] On the Accuracy of Conductance Quantization in Spin-Hall Insulators
    S. K. Konyzheva
    E. S. Tikhonov
    V. S. Khrapai
    JETP Letters, 2019, 109 : 92 - 95
  • [27] Quantization of the Hall conductance in a three-dimensional layer
    Murzin, SS
    Jansen, AGM
    Van der Linden, P
    PHYSICAL REVIEW LETTERS, 1998, 80 (12) : 2681 - 2684
  • [28] A different perspective on the history of the proof of Hall conductance quantization
    Matthew B. Hastings
    Nature Reviews Physics, 2020, 2 : 723 - 723
  • [29] GAUGE-INVARIANCE, ADIABATIC CHANGE, AND QUANTIZED HALL CONDUCTANCE
    SHIZUYA, K
    PHYSICAL REVIEW B, 1992, 45 (19): : 11143 - 11150
  • [30] Topological quantization and gauge invariance of charge transport in liquid insulators
    Grasselli, Federico
    Baroni, Stefano
    NATURE PHYSICS, 2019, 15 (09) : 967 - 972