Cuntz-Krieger algebras for infinite matrices

被引:0
|
作者
Exel, R [1 ]
Laca, M
机构
[1] Univ Fed Santa Catarina, Dept Math, BR-88010970 Florianopolis, SC, Brazil
[2] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an arbitrary infinite matrix A = {A(i,j)}(i, j is an element of G) with entries in {0, 1} and having no identically zero rows, we define an algebra O-A as the universal C*-algebra generated by partial isometries subject to conditions that generalize, to the infinite case, those introduced by Cuntz and Krieger for finite matrices. We realize O-A as the crossed product algebra for a partial dynamical system and, based on this description, we extend to the infinite case some of the main results known to hold in the finite case, namely the uniqueness theorem, the classification of ideals, and the simplicity criteria. O-A is always nuclear and we obtain conditions for it to be unital and purely infinite.
引用
收藏
页码:119 / 172
页数:54
相关论文
共 50 条
  • [41] SPECTRAL TRIPLES AND FINITE SUMMABILITY ON CUNTZ-KRIEGER ALGEBRAS
    Goffeng, Magnus
    Mesland, Bram
    DOCUMENTA MATHEMATICA, 2015, 20 : 89 - 170
  • [42] Lyapunov spectra for KMS states on Cuntz-Krieger algebras
    Marc Kesseböhmer
    Manuel Stadlbauer
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2007, 256 : 871 - 893
  • [43] A CUNTZ-KRIEGER UNIQUENESS THEOREM FOR SEMIGRAPH C*-ALGEBRAS
    Burgstaller, Bernhard
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02): : 38 - 57
  • [44] Topological entropy for the canonical endomorphism of Cuntz-Krieger algebras
    Boca, FP
    Goldstein, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 345 - 352
  • [46] REPRESENTATIONS OF FINITE-GROUPS AND CUNTZ-KRIEGER ALGEBRAS
    MANN, MH
    RAEBURN, I
    SUTHERLAND, CE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (02) : 225 - 243
  • [47] Hilbert C*-bimodules and continuous Cuntz-Krieger algebras
    Kajiwara, T
    Watatani, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (01) : 35 - 59
  • [48] Quantum edge correspondences and quantum Cuntz-Krieger algebras
    Brannan, Michael
    Hamidi, Mitch
    Ismert, Lara
    Nelson, Brent
    Wasilewski, Mateusz
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (03): : 886 - 913
  • [49] SHIFT EQUIVALENCES THROUGH THE LENS OF CUNTZ-KRIEGER ALGEBRAS
    Arlsen, Toke Meierc
    Dor-on, Adam
    Eilers, Soren
    ANALYSIS & PDE, 2024, 17 (01): : 345 - 377
  • [50] HYPERRIGID SUBSETS OF CUNTZ-KRIEGER ALGEBRAS AND THE PROPERTY OF RIGIDITY AT ZERO
    Salomon, Guy
    JOURNAL OF OPERATOR THEORY, 2019, 81 (01) : 61 - 79