Set-valued dynamics related to generalized Euler-Lagrange functional equations

被引:6
|
作者
Khodaei, Hamid [1 ]
Rassias, Themistocles M. [2 ]
机构
[1] Malayer Univ, Dept Math, Malayer 6571995863, Iran
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Generalized euler-Lagrange map; n-dimensional set-valued functional inclusion; compact and convex set; cone; STABILITY;
D O I
10.1007/s11784-018-0508-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper was to characterize the set-valued dynamics related to generalized Euler-Lagrange set-valued functional equations. More importantly, the corresponding single-valued functional equations acted as special cases will be included in our results.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] THE NULL SET OF THE EULER-LAGRANGE OPERATOR
    EDELEN, DGB
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1962, 11 (02) : 117 - 121
  • [22] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [23] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305
  • [24] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [25] On a class of special Euler-Lagrange equations
    Yan, Baisheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [26] On the Equivalence of Euler-Lagrange and Noether Equations
    A. C. Faliagas
    Mathematical Physics, Analysis and Geometry, 2016, 19
  • [27] Point symmetries of the Euler-Lagrange equations
    Torres del Castillo, G. F.
    REVISTA MEXICANA DE FISICA, 2014, 60 (02) : 129 - 135
  • [28] Image Denoising Using Euler-Lagrange Equations for Function-Valued Mappings
    Otero, Daniel
    La Torre, Davide
    Vrscay, Edward R.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 110 - 119
  • [29] The Schwarzian derivative and Euler-Lagrange equations
    Krynski, Wojciech
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182
  • [30] ON THE GEOMETRICAL STRUCTURE OF EULER-LAGRANGE EQUATIONS
    COSTANTINI, PG
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 389 - 402