On a low-dimensional model for magnetostriction

被引:9
|
作者
Iyer, RV [1 ]
Manservisi, S [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79401 USA
关键词
Preisach operator; magnetostriction; eddy current losses; low-dimensional model;
D O I
10.1016/j.physb.2005.10.089
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In recent years, a low-dimensional model for thin magnetostrictive actuators that incorporated magneto-elastic coupling, inertial and damping effects, ferromagnetic hysteresis and classical eddy current losses was developed using energy-balance principles by Venkataraman and Krishnaprasad. This model, with the classical Preisach operator representing the hysteretic constitutive relation between the magnetic field and magnetization in the axial direction, proved to be very successful in capturing dynamic hysteresis effects with electrical inputs in the 0-50 Hz range and constant mechanical loading. However, it is well known that for soft ferromagnetic materials there exist excess losses in addition to the classical eddy current losses. In this work, we propose to extend the above mentioned model for a magnetostrictive rod actuator by including excess losses via a nonlinear resistive element in the actuator circuit. We then show existence and uniqueness of solutions for the proposed model for electrical voltage input in the space L-2(0, T) boolean AND L-infinity(0, T) and mechanical force input in the space L-2(0, T). (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 382
页数:5
相关论文
共 50 条
  • [41] A low-dimensional, time-resolved and adapting model neuron
    Cartling, B
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (03) : 237 - 246
  • [42] Reversals of the Magnetic Field in one low-dimensional αΩ-dynamo model
    Vodinchar, Gleb
    Godomskaya, Anna
    Sheremetyeva, Olga
    VII INTERNATIONAL CONFERENCE "SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKES PRECURSORS", 2016, 11
  • [43] STATISTICAL-MODEL AND EXPERIMENTS ON LOW-DIMENSIONAL EXCITON TRANSPORT
    ERDLE, E
    MOHWALD, H
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1980, 98 (02): : 617 - 621
  • [44] MEAN-FIELD BEHAVIOR IN A LOCAL LOW-DIMENSIONAL MODEL
    BROKER, HM
    GRASSBERGER, P
    EUROPHYSICS LETTERS, 1995, 30 (06): : 319 - 324
  • [45] A low-dimensional model of binocular rivalry using winnerless competition
    Ashwin, Peter
    Lavric, Aureliu
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (09) : 529 - 536
  • [46] Low-dimensional dynamics of the Kuramoto model with rational frequency distributions
    Skardal, Per Sebastian
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [47] Analytical assessment and parameter estimation of a low-dimensional groundwater model
    Rupp, David E.
    Schmidt, Jochen
    Woods, Ross A.
    Bidwell, Vincent J.
    JOURNAL OF HYDROLOGY, 2009, 377 (1-2) : 143 - 154
  • [48] Magnetospheric dynamics from a low-dimensional nonlinear dynamics model
    Doxas, I.
    Horton, W.
    Physics of Plasmas, 1999, 6 (5 I): : 2198 - 2202
  • [49] Dynamics of a Low-Dimensional Model for Short Pulse Mode Locking
    Farnum, Edward D.
    Kutz, J. Nathan
    PHOTONICS, 2015, 2 (03): : 865 - 882
  • [50] Low-dimensional model of resistive interchange convection in magnetized plasma
    Bazdenkov, S
    Sato, T
    TWO-DIMENSIONAL TURBULENCE IN PLASMAS AND FLUIDS - RESEARCH WORKSHOP, 1997, (414): : 175 - 194