Semianalytical Solution of Multipoint Boundary Problems of Structural Analysis with the Use of Combined Application of Finite Element Method and Discrete-Continual Finite Element Method

被引:0
|
作者
Akimov, Pavel [1 ,2 ,3 ]
Negrozov, Oleg A. [1 ,3 ]
机构
[1] Russian Acad Architecture & Construct Sci, Moscow, Russia
[2] Sci Res Ctr StaDyO, Moscow, Russia
[3] Natl Res Moscow State Univ Civil Engn, Dept Appl Math, Moscow, Russia
关键词
discrete-continual finite element method; finite element method; semianalytical solution; multipoint boundary problems; structural analysis; VERIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Development, research and verification of correct mathematical models and methods of structural mechanics are the most important aspects of ensuring safety of buildings and complexes. The distinctive paper is devoted to semianalytical solution of multipoint boundary problems of structural analysis with the use of combined application of finite element method and discrete-continual finite element method. Structures containing parts (subdomains) with regular (in particular, constant or piecewise constant) physical and geometrical parameters in some dimension are under consideration. Operational formulations of two-dimensional and three-dimensional problems of structural mechanics with the use of so-called method of extended domain, corresponding numerical implementations (including construction of discrete (finite element) and discrete-continual approximation models for subdomains) and numerical examples are presented.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [21] About Verification of Discrete-Continual Finite Element Method of Structural Analysis. Part 2: Three-Dimensional Problems
    Akimov, Pavel A.
    Mozgaleva, Marina L.
    Sidorov, Vladimir N.
    XXIII R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (23RSP) (TFOCE 2014), 2014, 91 : 14 - 19
  • [22] Wavelet-based Multilevel Discrete-Continual Finite Element Method for Local Plate Analysis
    Akimov, Pavel A.
    Mozgaleva, Marina L.
    ADVANCES IN CIVIL STRUCTURES, PTS 1 AND 2, 2013, 351-352 : 13 - 16
  • [23] On the use of discrete-continual finite elements with triangular cross-section for semianalytical structural analysis
    Akimov, Pavel A.
    Negrozov, Oleg A.
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 14 - 19
  • [24] Modified Wavelet-based Multilevel Discrete-Continual Finite Element Method for Local Structural Analysis. Part 1: Continual and Discrete-Continual Formulations of the Problem.
    Akimov, Pavel A.
    Mozgaleva, Marina L.
    Aslami, Mojtaba
    Negrozov, Oleg A.
    APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 : 720 - 723
  • [25] Wavelet-based Multilevel Discrete-Continual Finite Element Method for Local Deep Beam Analysis
    Akimov, Pavel A.
    Mozgaleva, Marina L.
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING II, PTS 1-4, 2013, 405-408 : 3165 - 3168
  • [26] Structural applications of the combined finite–discrete element method
    Ante Munjiza
    Hrvoje Smoljanović
    Nikolina Živaljić
    Ante Mihanovic
    Vladimir Divić
    Ivana Uzelac
    Željana Nikolić
    Ivan Balić
    Boris Trogrlić
    Computational Particle Mechanics, 2020, 7 : 1029 - 1046
  • [27] Advanced Wavelet-Based Multilevel Discrete-Continual Finite Element Method for Three-Dimensional Local Structural Analysis
    Akimov, P. A.
    Aslami, M.
    Mozgaleva, M. L.
    Negrozov, O. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 713 - 716
  • [28] Structural applications of the combined finite-discrete element method
    Munjiza, Ante
    Smoljanovic, Hrvoje
    Zivaljic, Nikolina
    Mihanovic, Ante
    Divic, Vladimir
    Uzelac, Ivana
    Nikolic, Zeljana
    Balic, Ivan
    Trogrlic, Boris
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 1029 - 1046
  • [29] THE INFINITE BOUNDARY ELEMENT METHOD AND ITS APPLICATION TO A COMBINED FINITE BOUNDARY ELEMENT TECHNIQUE FOR UNBOUNDED FIELD PROBLEMS
    KAGAWA, Y
    YAMABUCHI, T
    KITAGAMI, S
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1983, 2 (04) : 179 - 193
  • [30] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457