Dual-Task Learning for Multi-Behavior Sequential Recommendation

被引:8
|
作者
Luo, Jinwei [1 ]
He, Mingkai [1 ]
Lin, Xiaolin [1 ]
Pan, Weike [1 ]
Ming, Zhong [1 ]
机构
[1] Shenzhen Univ, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-Behavior Sequential Recommendation; Next-Item Prediction; Purchase Prediction; Self-Attention;
D O I
10.1145/3511808.3557298
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, sequential recommendation has become a research hotspot while multi-behavior sequential recommendation (MBSR) that exploits users' heterogeneous interactions in sequences has received relatively little attention. Existing works often overlook the complementary effect of different perspectives when addressing the MBSR problem. In addition, there are two specific challenges remained to be addressed. One is the heterogeneity of a user's intention and the context information, the other one is the sparsity of the interactions of target behavior. To release the potential of multi-behavior interaction sequences, we propose a novel framework named NextIP that adopts a dual-task learning strategy to convert the problem to two specific tasks, i.e., next-item prediction and purchase prediction. For next-item prediction, we design a target-behavior aware context aggregator (TBCG), which utilizes the next behavior to guide all kinds of behavior-specific item sub-sequences to jointly predict the next item. For purchase prediction, we design a behavior-aware self-attention (BSA) mechanism to extract a user's behavior-specific interests and treat them as negative samples to learn the user's purchase preferences. Extensive experimental results on two public datasets show that our NextIP performs significantly better than the state-of-the-art methods.
引用
收藏
页码:1379 / 1388
页数:10
相关论文
共 50 条
  • [21] Two-stage Learning for Multi-behavior Recommendation
    Yan M.-S.
    Cheng Z.-Y.
    Sun J.
    Wang F.-S.
    Sun F.-M.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (05): : 2446 - 2465
  • [22] DMR: disentangled and denoised learning for multi-behavior recommendation
    Zhang, Yijia
    Chen, Wanyu
    Cai, Fei
    Shi, Zhenkun
    Qi, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [23] Cascading graph contrastive learning for multi-behavior recommendation
    Yang, Jiangquan
    Li, Xiangxia
    Li, Bin
    Tian, Lianfang
    Xu, Bo
    Chen, Yanhong
    NEUROCOMPUTING, 2024, 610
  • [24] Co-contrastive Learning for Multi-behavior Recommendation
    Li, Qingfeng
    Ma, Huifang
    Zhang, Ruoyi
    Jin, Wangyu
    Li, Zhixin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 32 - 45
  • [25] Multi-Interest Network with Simple Diffusion for Multi-Behavior Sequential Recommendation
    Li, Qingfeng
    Ma, Huifang
    Jin, Wangyu
    Ji, Yugang
    Li, Zhixin
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 734 - 742
  • [26] FILTER-ENHANCED HYPERGRAPH TRANSFORMER FOR MULTI-BEHAVIOR SEQUENTIAL RECOMMENDATION
    Shao, Zhufeng
    Wang, Shoujin
    Lu, Wenpeng
    Zhang, Weiyu
    Guan, Hongjiao
    Zhao, Long
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6575 - 6579
  • [27] BVAE: Behavior-aware Variational Autoencoder for Multi-Behavior Multi-Task Recommendation
    Rao, Qianzhen
    Liu, Yang
    Pan, Weike
    Zhong, Ming
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 625 - 636
  • [28] Multi-behavior contrastive learning with graph neural networks for recommendation
    Zhao, Zihan
    Tong, Xiangrong
    Wang, Yingjie
    Zhang, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [29] Adaptive Augmentation and Neighbor Contrastive Learning for Multi-Behavior Recommendation
    Wu, Xia
    Wang, Shaoqing
    Zhang, Yao
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 18 - 32
  • [30] Attention Mixture based Multi-scale Transformer for Multi-behavior Sequential Recommendation
    Li, Tianyang
    Yan, Hongbin
    Jiang, Yuxin
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2418 - 2423