Fuzzy partial metric spaces

被引:17
|
作者
Gregori, Valentin [1 ]
Minana, Juan-Jose [2 ]
Miravet, David [1 ]
机构
[1] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, Gandia, Spain
[2] Univ Illes Balears, Dept Ciencies Matemat & Informat, Palma De Mallorca, Spain
关键词
Partial metric space; fuzzy metric space; triangular norm; residuum operator; FIXED-POINT THEOREMS;
D O I
10.1080/03081079.2018.1552687
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we provide a concept of fuzzy partial metric space as an extension to fuzzy setting in the sense of Kramosil and Michalek, of the concept of partial metric due to Matthews. This extension has been defined using the residuum operator associated to a continuous t-norm and without any extra condition on . Similarly, it is defined the stronger concept of GV -fuzzy partial metric (fuzzy partial metric in the sense of George and Veeramani). After defining a concept of open ball in , a topology on X deduced from P is constructed, and it is showed that is a -space.
引用
收藏
页码:260 / 279
页数:20
相关论文
共 50 条
  • [21] ON FUZZY METRIC SPACES
    梁基华
    A Monthly Journal of Science, 1984, (02) : 155 - 158
  • [22] On fuzzy metric spaces
    Chakrabarty, K
    Biswas, R
    Nanda, S
    FUZZY SETS AND SYSTEMS, 1998, 99 (01) : 111 - 114
  • [23] FUZZY METRIC SPACES
    Bednar, Josef
    MENDEL 2008, 2008, : 121 - 124
  • [24] ON THE FUZZY METRIC SPACES
    Afrouzi, G. A.
    Shakeri, S.
    Rasouli, S. H.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 475 - 482
  • [25] FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
    Long, H. V.
    Son, N. T. K.
    Hoa, N. V.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2017, 14 (02): : 107 - 126
  • [26] Completions of partial metric spaces
    Ge, Xun
    Lin, Shou
    TOPOLOGY AND ITS APPLICATIONS, 2015, 182 : 16 - 23
  • [27] Soft partial metric spaces
    Altintas, Ismet
    Taskopru, Kemal
    Esengul Kyzy, Peyil
    SOFT COMPUTING, 2022, 26 (18) : 8997 - 9010
  • [28] ON THE COMPLETION OF PARTIAL METRIC SPACES
    Nguyen Van Dung
    QUAESTIONES MATHEMATICAE, 2017, 40 (05) : 589 - 597
  • [29] Metrizability of partial metric spaces
    Mykhaylyuk, Volodymyr
    Myronyk, Vadym
    TOPOLOGY AND ITS APPLICATIONS, 2022, 308
  • [30] ON THE TOPOLOGY OF PARTIAL METRIC SPACES
    Bugajewski, Dariusz
    Wang, Ruidong
    MATHEMATICA SLOVACA, 2020, 70 (01) : 135 - 146