Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl

被引:0
|
作者
Nole, Gabriele [1 ]
Danese, Maria [2 ]
Murgante, Beniamino [3 ]
Lasaponara, Rosa [1 ,3 ]
Lanorte, Antonio [1 ]
机构
[1] CNR, IMAA, C da S Loja, I-85050 Tito, PZ, Italy
[2] CNR, IBAM, I-85050 Tito, PZ, Italy
[3] Univ Basilicata, I-85100 Potenza, Italy
关键词
Urban morphology; Remote sensing; Autocorrelation; Change Detection; LAND-COVER; METROPOLITAN-AREA; ASSOCIATION; PROGRAM; GROWTH; DETECT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Satellite time series offer great potential for a quantitative assessment of urban expansion, urban sprawl and for monitoring of land use changes and soil consumption. This study deals with the spatial characterization of expansion of urban areas by using spatial autocorrelation techniques applied to multi-date Thematic Mapper (TM) satellite images. The investigation focused on several very small towns close to Bari. Urban areas were extracted from NASA Landsat images acquired in 1976, 1999 and 2009, respectively. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and spatial autocorrelation techniques to reveal spatial patterns. Urban areas were analyzed using both global and local autocorrelation indexes. This approach enables the characterization of pattern features of urban area expansion and it improves land use change estimation. The obtained results showed a significant urban expansion coupled with an increase of irregularity degree of border modifications from 1976 to 2009.
引用
收藏
页码:512 / 527
页数:16
相关论文
共 50 条
  • [41] Assessment of automatic extraction of surface water dynamism using multi-temporal satellite data
    Gouri Sankar Bhunia
    Earth Science Informatics, 2021, 14 : 1433 - 1446
  • [42] Monitoring Landscape Change for LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data
    Vogelmann, James E.
    Kost, Jay R.
    Tolk, Brian
    Howard, Stephen
    Short, Karen
    Chen, Xuexia
    Huang, Chengquan
    Pabst, Kari
    Rollins, Matthew G.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) : 252 - 264
  • [43] Estimation of crop parameters using multi-temporal optical and radar polarimetric satellite data
    Betbeder, Julie
    Fieuzal, Remy
    Philippets, Yannick
    Ferro-Famil, Laurent
    Baup, Frederic
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [44] Using multi-temporal and multispectral satellite data for coastal change analysis in Marmara Lake
    Yigit, Abdurahman Yasin
    Senol, Halil Ibrahim
    Kaya, Yunus
    GEOMATIK, 2022, 7 (03): : 253 - 260
  • [45] Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data
    Bouchahma, Majed
    Yan, Wanglin
    ARABIAN JOURNAL OF GEOSCIENCES, 2014, 7 (09) : 3705 - 3713
  • [46] A highly automated algorithm for wetland detection using multi-temporal optical satellite data
    Ludwig, Christina
    Walli, Andreas
    Schleicher, Christian
    Weichselbaum, Juergen
    Riffler, Michael
    REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 333 - 351
  • [47] Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data
    Majed Bouchahma
    Wanglin Yan
    Arabian Journal of Geosciences, 2014, 7 : 3705 - 3713
  • [48] Assessment of automatic extraction of surface water dynamism using multi-temporal satellite data
    Bhunia, Gouri Sankar
    EARTH SCIENCE INFORMATICS, 2021, 14 (03) : 1433 - 1446
  • [49] Geospatial measurement of urban sprawl and land transformation using multi-temporal datasets: A case study of Sonipat-Kundli urban agglomeration
    Verma, Preeti
    Jangra, Ravinder
    Kaushik, S. P.
    SUSTAINABLE ENVIRONMENT, 2024, 10 (01):
  • [50] Analyzing landslide with multi-temporal remote sensing images and DEM data
    Song, Y
    Fan, XT
    Lu, XC
    Liu, JH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5237 - 5239