Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl

被引:0
|
作者
Nole, Gabriele [1 ]
Danese, Maria [2 ]
Murgante, Beniamino [3 ]
Lasaponara, Rosa [1 ,3 ]
Lanorte, Antonio [1 ]
机构
[1] CNR, IMAA, C da S Loja, I-85050 Tito, PZ, Italy
[2] CNR, IBAM, I-85050 Tito, PZ, Italy
[3] Univ Basilicata, I-85100 Potenza, Italy
关键词
Urban morphology; Remote sensing; Autocorrelation; Change Detection; LAND-COVER; METROPOLITAN-AREA; ASSOCIATION; PROGRAM; GROWTH; DETECT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Satellite time series offer great potential for a quantitative assessment of urban expansion, urban sprawl and for monitoring of land use changes and soil consumption. This study deals with the spatial characterization of expansion of urban areas by using spatial autocorrelation techniques applied to multi-date Thematic Mapper (TM) satellite images. The investigation focused on several very small towns close to Bari. Urban areas were extracted from NASA Landsat images acquired in 1976, 1999 and 2009, respectively. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and spatial autocorrelation techniques to reveal spatial patterns. Urban areas were analyzed using both global and local autocorrelation indexes. This approach enables the characterization of pattern features of urban area expansion and it improves land use change estimation. The obtained results showed a significant urban expansion coupled with an increase of irregularity degree of border modifications from 1976 to 2009.
引用
收藏
页码:512 / 527
页数:16
相关论文
共 50 条
  • [1] Analyzing urban sprawl applying spatial autocorrelation techniques to multi-temporal satellite data
    Calamita, G.
    Lanorte, A.
    Lasaponara, R.
    Danese, M.
    Murgante, B.
    Nole, G.
    Casas, G. B. Las
    URBAN AND REGIONAL DATA MANAGEMENT, 2013, : 161 - 170
  • [2] Quantifying Urban Sprawl with Spatial Autocorrelation Techniques using Multi-Temporal Satellite Data
    Nole, Gabriele
    Lasaponara, Rosa
    Lanorte, Antonio
    Murgante, Beniamino
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2014, 5 (02) : 19 - 37
  • [3] Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images
    Tang, Junmei
    Wang, Le
    Yao, Zhijun
    GISCIENCE & REMOTE SENSING, 2006, 43 (03) : 218 - 232
  • [4] Assessment of Urban Sprawl of Islamabad Metropolitan Area Using Multi-Sensor and Multi-Temporal Satellite Data
    Butt, Mohsin Jamil
    Waqas, Ahmad
    Iqbal, Muhammad Farooq
    Muhammad, Gul
    Lodhi, M. A. K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (01) : 101 - 114
  • [5] Assessment of Urban Sprawl of Islamabad Metropolitan Area Using Multi-Sensor and Multi-Temporal Satellite Data
    Mohsin Jamil Butt
    Ahmad Waqas
    Muhammad Farooq Iqbal
    Gul Muhammad
    M. A. K. Lodhi
    Arabian Journal for Science and Engineering, 2012, 37 : 101 - 114
  • [6] Analysis of urban growth using multi-temporal satellite data in Istanbul, Turkey
    Maktav, D
    Erbek, FS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (04) : 797 - 810
  • [7] Multi-temporal Satellite Image Analysis Using Unsupervised Techniques
    Arvind, C. S.
    Vanjare, Ashoka
    Omkar, S. N.
    Senthilnath, J.
    Mani, V.
    Diwakar, P. G.
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 : 757 - +
  • [8] Urban sprawl in provincial capital cities in China: evidence from multi-temporal urban land products using Landsat data
    Lu, Linlin
    Guo, Huadong
    Corbane, Christina
    Li, Qingting
    SCIENCE BULLETIN, 2019, 64 (14) : 955 - 957
  • [9] Urban sprawl in provincial capital cities in China: evidence from multi-temporal urban land products using Landsat data
    Linlin Lu
    Huadong Guo
    Christina Corbane
    Qingting Li
    Science Bulletin, 2019, 64 (14) : 955 - 957
  • [10] Monitoring of forest change by using multi-temporal satellite data
    Musaoglu, N
    Örmeci, C
    REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 41 - +