Minimal strong digraphs

被引:5
|
作者
Garcia-Lopez, J. [2 ]
Marijuan, C. [1 ]
机构
[1] ETSI Informat, Dpto Matemat Aplicada, Valladolid 47011, Spain
[2] EU Informat, Dpto Matemat Aplicada, Madrid 28031, Spain
关键词
Minimal strong digraphs; Strong digraphs; Isospectral strong digraphs; DECOMPOSABLE MATRICES; GRAPHS; BLOCKS;
D O I
10.1016/j.disc.2011.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce adequate concepts of expansion of a digraph to obtain a sequential construction of minimal strong digraphs. We characterize the necessary and sufficient condition for an external expansion of a minimal strong digraph to be a minimal strong digraph. We prove that every minimal strong digraph of order n >= 2 is the expansion of a minimal strong digraph of order n - 1 and we give sequentially generative procedures for the constructive characterization of the classes of minimal strong digraphs. Finally we describe algorithms to compute unlabeled minimal strong digraphs and their isospectral classes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 50 条
  • [31] The strong metric dimension of graphs and digraphs
    Oellermann, Ortrud R.
    Peters-Fransen, Joel
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 356 - 364
  • [32] (Strong) Proper Connection in Some Digraphs
    Ma, Yingbin
    Nie, Kairui
    IEEE ACCESS, 2019, 7 : 69692 - 69697
  • [33] Strong Subgraph Connectivity of Digraphs: A Survey
    Sun, Yuefang
    Gutin, Gregory
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)
  • [34] EXPONENTS AND DIAMETERS OF STRONG PRODUCTS OF DIGRAPHS
    Kim, Byeong Moon
    Song, Byung Chul
    Hwang, Woonjae
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 1106 - 1111
  • [35] Strong arc decompositions of split digraphs
    Bang-Jensen, Jorgen
    Wang, Yun
    JOURNAL OF GRAPH THEORY, 2025, 108 (01) : 5 - 26
  • [36] Center of Cartesian and strong product of digraphs
    Narasimha-Shenoi, Prasanth G.
    Joseph, Mary Shalet Thottungal
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (04) : 267 - 273
  • [37] Strong Connectedness of Generalized Circulant Digraphs
    Li Xueliang (1) \ \ Elkin Vumar (2) (1)(Department of Applied Mathematics Northwestern Polytechnical University Xi’an
    新疆大学学报(自然科学版), 1998, (02) : 2 - 9
  • [38] Counting acyclic and strong digraphs by descents
    Archer, Kassie
    Gessel, Ira M.
    Graves, Christina
    Liang, Xuming
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [39] The automorphism groups of minimal infinite circulant digraphs
    Meng, JX
    Huang, QX
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (04) : 425 - 429
  • [40] Normal minimal Cayley digraphs of abelian groups
    Meng, JX
    Ying, B
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (04) : 523 - 528