Pattern Analysis for Machine Olfaction: A Review

被引:412
|
作者
Gutierrez-Osuna, Ricardo [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Classification; clustering; dimensionality reduction; electronic nose; multicomponent analysis; pattern analysis; preprocessing; validation;
D O I
10.1109/JSEN.2002.800688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pattern analysis constitutes a critical building block in the development of gas sensor array instruments capable of detecting, identifying, and measuring volatile compounds, a technology that has been proposed as an artificial substitute of the human olfactory system. The successful design of a pattern analysis system for machine olfaction requires a careful consideration of the various issues involved in processing multivariate data: signal-preprocessing, feature extraction, feature selection, classification, regression, clustering, and validation. A considerable number of methods from statistical pattern recognition, neural networks, chemometrics, machine learning, and biological cybernetics has been used to process electronic nose data. The objective of this review paper is to provide a summary and guidelines for using the most widely used pattern analysis techniques, as well as to identify research directions that are at the frontier of sensor-based machine olfaction.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
  • [31] Olfaction and Aging: A Mini-Review
    Attems, Johannes
    Walker, Lauren
    Jellinger, Kurt A.
    GERONTOLOGY, 2015, 61 (06) : 485 - 490
  • [32] MODERN THEORIES OF OLFACTION: A CRITICAL REVIEW
    Jones, F. Nowell
    Jones, Margaret Hubbard
    JOURNAL OF PSYCHOLOGY, 1953, 36 (01): : 207 - 241
  • [33] Odor Assessment of Automobile Cabin Air by Machine Olfaction
    Li, J.
    Hodges, R. D.
    Schiffman, S. S.
    Nagle, H. T.
    Gutierrez-Osuna, R.
    Luckey, G.
    Crowell, J.
    2014 IEEE SENSORS, 2014, : 1726 - 1729
  • [34] Approximating Sensors' Responses of odor mixture on Machine Olfaction
    Phaisangittisagul, Ekachai
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 60 - 64
  • [35] Avian Olfaction: A Review of the Recent Literature
    Abankwah, Vincent
    Deeming, D. Charles
    Pike, Thomas W.
    COMPARATIVE COGNITION & BEHAVIOR REVIEWS, 2020, 15 : 149 - 161
  • [36] Olfaction in the domestic fowl: A critical review
    Jones, RB
    Roper, TJ
    PHYSIOLOGY & BEHAVIOR, 1997, 62 (05) : 1009 - 1018
  • [37] Intelligent Perception of Multiaroma Types Based on Machine Olfaction
    Li, Qingrong
    He, Jiafeng
    Wen, Tengteng
    Li, Jingshan
    Liu, Qi
    Luo, Dehan
    IEEE SENSORS JOURNAL, 2022, 22 (22) : 21478 - 21488
  • [38] Data Simulation in Machine Olfaction with the R Package Chemosensors
    Ziyatdinov, Andrey
    Perera-Lluna, Alexandre
    PLOS ONE, 2014, 9 (02):
  • [39] Decay detection of constructional softwoods using machine olfaction
    Suzuki, Masaki
    Miyauchi, Teruhisa
    Isaji, Shinichi
    Hirabayashi, Yasushi
    Naganawa, Ryuichi
    JOURNAL OF WOOD SCIENCE, 2021, 67 (01)
  • [40] Olfaction in allergic rhinitis: A systematic review
    Stuck, Boris A.
    Hummel, Thomas
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2015, 136 (06) : 1460 - 1470