Real-Time Statistical Modeling of Blood Sugar

被引:7
|
作者
Otoom, Mwaffaq [1 ]
Alshraideh, Hussam [2 ]
Almasaeid, Hisham M. [1 ]
Lopez-de-Ipina, Diego [3 ]
Bravo, Jose [4 ]
机构
[1] Yarmouk Univ, Irbid, Jordan
[2] Jordan Univ Sci & Technol, Irbid, Jordan
[3] Univ Deusto, Bilbao, Spain
[4] Univ Castilla La Mancha, E-13071 Ciudad Real, Spain
关键词
ARIMA; Cloud-based computing; Diabetes; Insulin administration; Markov processes; Web services; TYPE-1; DIABETES-MELLITUS; INSULIN; GLUCOSE;
D O I
10.1007/s10916-015-0301-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Diabetes is considered a chronic disease that incurs various types of cost to the world. One major challenge in the control of Diabetes is the real time determination of the proper insulin dose. In this paper, we develop a prototype for real time blood sugar control, integrated with the cloud. Our system controls blood sugar by observing the blood sugar level and accordingly determining the appropriate insulin dose based on patient's historical data, all in real time and automatically. To determine the appropriate insulin dose, we propose two statistical models for modeling blood sugar profiles, namely ARIMA and Markov-based model. Our experiment used to evaluate the performance of the two models shows that the ARIMA model outperforms the Markov-based model in terms of prediction accuracy.
引用
收藏
页数:6
相关论文
共 50 条