AN APPLICATION OF THE COALESCENCE THEORY TO BRANCHING RANDOM WALKS

被引:0
|
作者
Athreya, K. B. [1 ]
Hong, Jyy-I [2 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Waldorf Coll, Dept Math, Forest City, IA 50436 USA
关键词
Branching process; branching random walk; coalescence; supercritical; infinite mean; CONVERGENCE; INFINITE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a discrete-time single-type Galton Watson branching random walk {Z(n), zeta(n)}(n >= 0), where Z(n) is the population of the nth generation and zeta(n) is a collection of the positions on R of the Z(n) individuals in the nth generation, let Y-n be the position of a randomly chosen individual from the nth generation and Z(n) (x) be the number of points zeta(n) that are less than or equal to x for x is an element of R. In this paper we show in the explosive case (i.e. m = E(Z(1)vertical bar Z(0) = 1) = infinity) when the offspring distribution is in the domain of attraction of a stable law of order alpha, 0 < alpha < 1, that the sequence of random functions {Z(n)(x)/Z(n) : -infinity < x < infinity} converges in the finite-dimensional sense to {delta(x) : -infinity < x < infinity}, where delta(x) 1({N <= x}) and N is an N(0,1) random variable.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 50 条
  • [21] BRANCHING RANDOM WALKS ON Zd WITH PERIODIC BRANCHING SOURCES
    Platonova, M., V
    Ryadovkin, K. S.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 64 (02) : 229 - 248
  • [22] Branching Random Walks with Heavy Tails
    Yarovaya, Elena
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (16) : 3001 - 3010
  • [23] Stochasticity, invasions, and branching random walks
    Kot, M
    Medlock, J
    Reluga, T
    Walton, DB
    THEORETICAL POPULATION BIOLOGY, 2004, 66 (03) : 175 - 184
  • [24] Moments of Moments and Branching Random Walks
    Bailey, E. C.
    Keating, J. P.
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [25] Operator Equations of Branching Random Walks
    E. Yarovaya
    Methodology and Computing in Applied Probability, 2019, 21 : 1007 - 1021
  • [26] BRANCHING RANDOM-WALKS ON TREES
    MADRAS, N
    SCHINAZI, R
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 42 (02) : 255 - 267
  • [27] Survival of branching random walks with absorption
    Aidekon, Elie
    Jaffuel, Bruno
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) : 1901 - 1937
  • [28] Operator Equations of Branching Random Walks
    Yarovaya, E.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2019, 21 (03) : 1007 - 1021
  • [29] On the overlap distribution of Branching Random Walks
    Jagannath, Aukosh
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [30] MAXIMA OF BRANCHING RANDOM-WALKS
    DURRETT, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 165 - 170