Unsupervised Spatiotemporal Analysis of FMRI Data Using Graph-Based Visualizations of Self-Organizing Maps

被引:15
|
作者
Katwal, Santosh B. [1 ,2 ]
Gore, John C. [2 ,3 ]
Marois, Rene [4 ]
Rogers, Baxter P. [2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Inst Imaging Sci VUIIS, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Biomed Engn Radiol & Radiol Sci, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Psychol, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
Functional MRI (fMRI); SOM visualization; reaction time; self-organizing map; INDEPENDENT COMPONENT ANALYSIS; BOLD HEMODYNAMIC-RESPONSES; FUNCTIONAL MRI; DATA PROJECTION; NEURAL-NETWORK; TIME-SERIES; BRAIN; MODEL; CONNECTIVITY;
D O I
10.1109/TBME.2013.2258344
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.
引用
收藏
页码:2472 / 2483
页数:12
相关论文
共 50 条
  • [41] Visual, Linguistic Data Mining Using Self-Organizing Maps
    Wijayasekara, Dumidu
    Manic, Milos
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [42] Data fusion using a hierarchy of self-organizing feature maps
    Knopf, GK
    SENSORS AND CONTROLS FOR INTELLIGENT MACHINING, AGILE MANUFACTURING, AND MECHATRONICS, 1998, 3518 : 6 - 16
  • [43] Clustering of regional HDI data using Self-Organizing Maps
    Ferreira Costa, Jose Alfredo
    Vieira Pinto, Antonio Paulo
    de Andrade, Joao Ribeiro
    de Medeiros, Marcial Guerra
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [44] The Research Using Self-Organizing Maps on Enterprise Economic Data
    Wang Heyong
    2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 611 - 613
  • [45] A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection
    Xiaofei Qu
    Lin Yang
    Kai Guo
    Linru Ma
    Meng Sun
    Mingxing Ke
    Mu Li
    Mobile Networks and Applications, 2021, 26 : 808 - 829
  • [46] Kohonen's self-organizing maps in contextual analysis of data
    Honkela, T
    Koskinen, I
    Koskenniemi, T
    Karvonen, S
    INFORMATION ORGANIZATION AND DATABASES: FOUNDATIONS OF DATA ORGANIZATION, 2000, 579 : 135 - 148
  • [47] Application of Self-Organizing Maps to the Stock Exchange Data Analysis
    Kossakowski, Piotr
    Bilski, Piotr
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOLS 1-2, 2015, : 208 - 213
  • [48] Quality assessment of data discrimination using self-organizing maps
    Mekler, Alexey
    Schwarz, Dmitri
    JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 51 : 210 - 218
  • [49] A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection
    Qu, Xiaofei
    Yang, Lin
    Guo, Kai
    Ma, Linru
    Sun, Meng
    Ke, Mingxing
    Li, Mu
    Mobile Networks and Applications, 2021, 26 (02) : 808 - 829
  • [50] A parallel growing architecture for self-organizing maps with unsupervised learning
    Valova, I
    Szer, D
    Gueorguieva, N
    Buer, A
    NEUROCOMPUTING, 2005, 68 : 177 - 195