Guessing with Mutually Stationary Sets

被引:2
|
作者
Matet, Pierre [1 ]
机构
[1] Univ Caen, CNRS, Math Lab, F-14032 Caen, France
关键词
P-K(lambda); diamond principle;
D O I
10.4153/CMB-2008-057-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the mutually stationary sets of Foreman and Magidor as a toot to establish the validity of the two-cardinal version of the diamond principle in some special cases.
引用
收藏
页码:579 / 583
页数:5
相关论文
共 50 条
  • [31] Maximal sets of mutually orthogonal frequency squares
    Cavenagh, Nicholas J.
    Mammoliti, Adam
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 525 - 558
  • [32] Edges of Mutually Non-dominating Sets
    Everson, Richard M.
    Walker, David J.
    Fieldsend, Jonathan E.
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 607 - 614
  • [33] Sets of mutually orthogonal Sudoku frequency squares
    John T. Ethier
    Gary L. Mullen
    Designs, Codes and Cryptography, 2019, 87 : 57 - 65
  • [34] Project selection with sets of mutually exclusive alternatives
    Minken, Herald
    ECONOMICS OF TRANSPORTATION, 2016, 6 : 11 - 17
  • [35] Stationary motions of two mutually gravitating bodies and their stabilities
    Munitsyna, M.A.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2005, (06): : 38 - 41
  • [36] On reflection of stationary sets in Pκλ
    Jech, T
    Shelah, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2507 - 2515
  • [37] A TOPOLOGICAL CHARACTERIZATION OF STATIONARY SETS
    ISMAIL, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1993, 43 (04) : 765 - 767
  • [38] SPLITTING STATIONARY SETS IN p(λ)
    Usuba, Toshimichi
    JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (01) : 49 - 62
  • [39] STATIONARY REGENERATIVE SETS AND SUBORDINATORS
    FITZSIMMONS, PJ
    TAKSAR, M
    ANNALS OF PROBABILITY, 1988, 16 (03): : 1299 - 1305
  • [40] FORCING AXIOMS AND STATIONARY SETS
    VELICKOVIC, B
    ADVANCES IN MATHEMATICS, 1992, 94 (02) : 256 - 284