Prediction of Marshall Stability and Marshall Flow of Asphalt Pavements Using Supervised Machine Learning Algorithms

被引:7
|
作者
Gul, Muhammad Aniq [1 ]
Islam, Md Kamrul [1 ]
Awan, Hamad Hassan [2 ]
Sohail, Muhammad [2 ]
Al Fuhaid, Abdulrahman Fahad [1 ]
Arifuzzaman, Md [1 ]
Qureshi, Hisham Jahangir [1 ]
机构
[1] King Faisal Univ KFU, Coll Engn, Dept Civil & Environm Engn, POB 380, Al Hasa 31982, Saudi Arabia
[2] Natl Univ Sci & Technol NUST, Sch Civil & Environm Engn SCEE, H-12 Campus, Islamabad 44000, Pakistan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
transportation engineering; design optimization; traffic; pavement design; materials; artificial intelligence; HOT MIX ASPHALT; BITUMINOUS MIXTURES; TENSILE-STRENGTH; NEURAL-NETWORKS; CONCRETE; MODEL; FORMULATION; BEHAVIOR; ANFIS;
D O I
10.3390/sym14112324
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The conventional method for determining the Marshall Stability (MS) and Marshall Flow (MF) of asphalt pavements entails laborious, time-consuming, and expensive laboratory procedures. In order to develop new and advanced prediction models for MS and MF of asphalt pavements the current study applied three soft computing techniques: Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multi Expression Programming (MEP). A comprehensive database of 343 data points was established for both MS and MF. The nine most significant and straightforwardly determinable geotechnical factors were chosen as the predictor variables. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), coefficient of determination (R-2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed the rising order of input significance of MS and MF. The results of parametric analysis (PA) were also found to be consistent with previous research findings. The findings of the comparison showed that ANN, ANFIS, and MEP are all reliable and effective methods for the estimation of MS and MF. The mathematical expressions derived from MEP represent the novelty of MEP and are relatively reliable and simple. R-overall values for MS and MF were in the order of MEP > ANFIS > ANN with all values over the permissible range of 0.80 for both MS and MF. Therefore, all the techniques showed higher performance, possessed high prediction and generalization capabilities, and assessed the relative significance of input parameters in the prediction of MS and MF. In terms of training, testing, and validation data sets and their closeness to the ideal fit, i.e., the slope of 1:1, MEP models outperformed the other two models. The findings of this study will contribute to the choice of an appropriate artificial intelligence strategy to quickly and precisely estimate the Marshall Parameters. Hence, the findings of this research study would assist in safer, faster, and more sustainable predictions of MS and MF, from the standpoint of time and resources required to perform the Marshall tests.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach
    Kurnaz, Talas Fikret
    Erden, Caner
    Dagdeviren, Ugur
    Demir, Alparslan Serhat
    Kokcam, Abdullah Hulusi
    NATURAL HAZARDS, 2024, 120 (08) : 6991 - 7014
  • [32] ABR prediction using supervised learning algorithms
    Yousef, Hiba
    Le Feuvre, Jean
    Storelli, Alexandre
    2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
  • [33] Artificial neural network based modelling of the Marshall Stability of asphalt concrete
    Ozgan, Ercan
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 6025 - 6030
  • [34] Comparison and statistical evaluation of Marshall stability and stiffness modulus for asphalt mixtures
    Valentin, J.
    Vackova, P.
    Belhaj, M.
    CURRENT PERSPECTIVES AND NEW DIRECTIONS IN MECHANICS, MODELLING AND DESIGN OF STRUCTURAL SYSTEMS, 2022, : 1600 - 1604
  • [35] Ransomware Prediction Using Supervised Learning Algorithms
    Adamu, Umaru
    Awan, Irfan
    2019 7TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2019), 2019, : 57 - 63
  • [36] Prediction of asphaltene stability in crude oils using machine learning algorithms
    Ali, Syed Imran
    Lalji, Shaine Mohammadali
    Awan, Zahoor
    Qasim, Muhammad
    Alshahrani, Thamraa
    Khan, Firoz
    Ullah, Sami
    Ashraf, Almas
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 235
  • [37] CHURN PREDICTION - A COMPARATIVE ANALYSIS WITH SUPERVISED MACHINE LEARNING ALGORITHMS
    Gangadharan, Chika K.
    Alex, Roshni
    Sabu, M. K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3049 - 3060
  • [38] Comparing different supervised machine learning algorithms for disease prediction
    Uddin, Shahadat
    Khan, Arif
    Hossain, Md Ekramul
    Moni, Mohammad Ali
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [39] Comparing different supervised machine learning algorithms for disease prediction
    Shahadat Uddin
    Arif Khan
    Md Ekramul Hossain
    Mohammad Ali Moni
    BMC Medical Informatics and Decision Making, 19
  • [40] Prediction of high-temperature creep in concrete using supervised machine learning algorithms
    Bouras, Y.
    Li, L.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 400