Solving the spin-weighted spheroidal wave equation

被引:0
|
作者
Li Yu-Zhen [1 ]
Tian Gui-Hua [1 ]
Dong Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
spin-weighted spherical wave equation; supersymmetric quantum mechanics; shape invariance; recurrence relation; QUANTUM-MECHANICS; PERTURBATIONS;
D O I
10.1088/1674-1056/22/6/060203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we solve spin-weighted spheroidal wave equations through super-symmetric quantum mechanics with a different expression of the super-potential. We use the shape invariance property to compute the "excited" eigenvalues and eigenfunctions. The results are beneficial to researchers for understanding the properties of the spin-weighted spheroidal wave more deeply, especially its integrability.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Spin-weighted Green's functions in a conical space
    Linet, B
    MODERN PHYSICS LETTERS A, 1996, 11 (39-40) : 3075 - 3079
  • [32] SPIN-WEIGHTED SPHERICAL HARMONICS AND ELECTROMAGNETIC MULTIPOLE EXPANSIONS
    SCANIO, JJG
    AMERICAN JOURNAL OF PHYSICS, 1977, 45 (02) : 173 - 178
  • [33] SPIN-WEIGHTED CYLINDRICAL HARMONICS AND THE EUCLIDEAN GROUP OF THE PLANE
    DELCASTILLO, GFT
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3856 - 3862
  • [34] Some Addition Theorems for Spin-Weighted Spherical Harmonics
    Monteverdi, Alessandro
    Winstanley, Elizabeth
    UNIVERSE, 2024, 10 (12)
  • [35] Spin-Weighted Spherical Harmonics for Polarized Light Transport
    Yi, Shinyoung
    Kim, Donggun
    Na, Jiwoong
    Tong, Xin
    Kim, Min H.
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [36] How should spin-weighted spherical functions be defined?
    Boyle, Michael
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [37] Correspondence between tensorial spin-s and spin-weighted spherical harmonics
    Mandrilli, P. A.
    Nieva, J. I.
    Quiroga, G. D.
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (06)
  • [38] SPIN-WEIGHTED SPHERICAL-HARMONICS AND ELECTROMAGNETIC MULTIPOLE EXPANSIONS
    BROOKS, RBS
    PURKIS, A
    SEMON, MD
    AMERICAN JOURNAL OF PHYSICS, 1983, 51 (05) : 456 - 457
  • [39] Correspondence between tensorial spin-s and spin-weighted spherical harmonics
    P. A. Mandrilli
    J. I. Nieva
    G. D. Quiroga
    General Relativity and Gravitation, 2020, 52
  • [40] Maxwell Equations Solution Using Spin-weighted Spherical Harmonics
    Diaz Jimenez, B.
    Torres del Castillo, G. F.
    XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2011, 1361 : 383 - +