Cluster formation in populations of coupled chaotic neurons

被引:3
|
作者
Kamal, N. K. [1 ]
Sinha, S. [2 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Indian Inst Sci Educ & Res IISER Mohali, Knowledge City, Punjab, India
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2013年 / 222卷 / 3-4期
关键词
SYNCHRONIZATION; MAPS; OSCILLATORS; TRANSITIONS; ARRAYS; PHASE;
D O I
10.1140/epjst/e2013-01893-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate cluster formation in populations of coupled chaotic model neurons under homogeneous global coupling, and distance-dependent coupling, where the coupling weights between neurons depend on their relative distance. Three types of clusters emerge for global coupling: synchronized cluster, two state cluster and anti-phase cluster. In addition to these, we find a novel three state cluster for distance-dependent coupling, where the population splits into two synchronized groups and one incoherent group. Lastly, we study a system with random inhomogeneous coupling strengths, in order to discern if the special pattern found in distance-dependent coupling arises from the underlying lattice structure or from the inhomogeneity in coupling.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 50 条
  • [41] Transition to coherence in populations of coupled chaotic oscillators: A linear response approach
    Topaj, D
    Kye, WH
    Pikovsky, A
    PHYSICAL REVIEW LETTERS, 2001, 87 (07) : 74101 - 1
  • [42] Synchronized Cluster Formation in Coupled Laser Networks
    Nixon, Micha
    Friedman, Moti
    Ronen, Eitan
    Friesem, Asher A.
    Davidson, Nir
    Kanter, Ido
    PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [43] Pattern formation in networks of chaotic spiking-bursting neurons
    Rabinovich, MI
    Torres, JJ
    Varona, P
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 89 - 97
  • [44] Fluctuations and information filtering in coupled populations of spiking neurons with adaptation
    Deger, Moritz
    Schwalger, Tilo
    Naud, Richard
    Gerstner, Wulfram
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [45] The formation of multiple populations in the globular cluster 47 Tuc
    Ventura, P.
    Di Criscienzo, M.
    D'Antona, F.
    Vesperini, E.
    Tailo, M.
    Dell'Agli, F.
    D'Ercole, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (04) : 3274 - 3282
  • [46] Chaotic Resonance in Coupled Inferior Olive Neurons with the Llinas Approach Neuron Model
    Nobukawa, Sou
    Nishimura, Haruhiko
    NEURAL COMPUTATION, 2016, 28 (11) : 2505 - 2532
  • [47] Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system
    Belykh V.N.
    Pankratova E.V.
    Radiophys. Quantum Electron., 2006, 11 (910-921): : 910 - 921
  • [48] Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis
    Varona, P
    Torres, JJ
    Abarbanel, HDI
    Rabinovich, MI
    Elson, RC
    BIOLOGICAL CYBERNETICS, 2001, 84 (02) : 91 - 101
  • [49] Chaotic Synchronization of Hindmarsh-Rose Neurons Coupled by Cubic Nonlinear Feedback
    Fang, Xiaoling
    Yu, Hongjie
    ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS, 2008, : 315 - +
  • [50] The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons
    Shim, Yoonsik
    Husbands, Phil
    ADAPTIVE BEHAVIOR, 2018, 26 (04) : 165 - 176