Rank abundance relations in evolutionary dynamics of random replicators

被引:16
|
作者
Yoshino, Yoshimi [1 ,2 ]
Galla, Tobias [3 ,4 ]
Tokita, Kei [1 ,2 ,5 ]
机构
[1] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[2] Osaka Univ, Cybermedia Ctr, Toyonaka, Osaka 5600043, Japan
[3] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[5] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan
关键词
D O I
10.1103/PhysRevE.78.031924
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a nonequilibrium statistical mechanics description of rank abundance relations (RAR) in random community models of ecology. Specifically, we study a multispecies replicator system with quenched random interaction matrices. We here consider symmetric interactions as well as asymmetric and antisymmetric cases. RARs are obtained analytically via a generating functional analysis, describing fixed-point states of the system in terms of a small set of order parameters, and in dependence on the symmetry or otherwise of interactions and on the productivity of the community. Our work is an extension of Tokita [Phys. Rev. Lett. 93, 178102 (2004)], where the case of symmetric interactions was considered within an equilibrium setup. The species abundance distribution in our model come out as truncated normal distributions or transformations thereof and, in some case, are similar to left-skewed distributions observed in ecology. We also discuss the interaction structure of the resulting food-web of stable species at stationarity, cases of heterogeneous cooperation pressures as well as effects of finite system size and of higher-order interactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The rank of random graphs
    Costello, Kevin P.
    Vu, Van H.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (03) : 269 - 285
  • [32] On the rank of random matrices
    Cooper, C
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (02) : 209 - 232
  • [33] The rank of a random matrix
    Feng, Xinlong
    Zhang, Zhinan
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 689 - 694
  • [34] On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins
    DePristo, Mark A.
    Zilversmit, Martine M.
    Hartl, Daniel L.
    GENE, 2006, 378 : 19 - 30
  • [35] Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval
    Yoshihito Kazashi
    Fabio Nobile
    Stochastics and Partial Differential Equations: Analysis and Computations, 2021, 9 : 603 - 629
  • [36] Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval
    Kazashi, Yoshihito
    Nobile, Fabio
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03): : 603 - 629
  • [37] Social-psychological dynamics of police-minority relations: An evolutionary interpretation
    Holmes, Malcolm D.
    Smith, Brad W.
    JOURNAL OF CRIMINAL JUSTICE, 2018, 59 : 58 - 68
  • [38] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130
  • [39] RANK OF PROJECTION OF A RANDOM PROCESS
    EPHREMIDES, A
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (02): : 431 - 433
  • [40] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 579 - 591