Orbit structure of interval exchange transformations with flip

被引:12
|
作者
Nogueira, Arnaldo [1 ]
Pires, Benito [2 ]
Troubetzkoy, Serge [3 ]
机构
[1] Aix Marseille Univ 163, Inst Math Luminy, F-13288 Marseille 9, France
[2] Univ Sao Paulo, Dept Comp & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
[3] Aix Marseille Univ, Inst Math Luminy, Ctr Phys Theor, Federat Rech Unites Math Marseille, F-13288 Marseille 9, France
基金
巴西圣保罗研究基金会;
关键词
TRANSLATION;
D O I
10.1088/0951-7715/26/2/525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sharp bound on the number of invariant components of an interval exchange transformation (IET) is provided. More precisely, it is proved that the number of periodic components n(per) and the number of minimal components n(min) of an interval exchange transformation of n intervals satisfy n(per) + 2n(min) <= n. Moreover, it is shown that almost all IETs are typical, that is, all have stable periodic components and all the minimal components are robust (i.e. persistent under almost all small perturbations). Finally, we find all the possible values for the integer vector (n(per), n(min)) for all typical IET of n intervals.
引用
收藏
页码:525 / 537
页数:13
相关论文
共 50 条
  • [11] EIGENVALUES AND SIMPLICITY OF INTERVAL EXCHANGE TRANSFORMATIONS
    Ferenczi, Sebastien
    Zamboni, Luca Q.
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (03): : 361 - 392
  • [12] RANK 2 INTERVAL EXCHANGE TRANSFORMATIONS
    BOSHERNITZAN, MD
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 : 379 - 394
  • [13] CENTRALIZERS IN THE GROUP OF INTERVAL EXCHANGE TRANSFORMATIONS
    Bernazzani, Daniel
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 233 (01) : 29 - 48
  • [14] INTERVAL EXCHANGE TRANSFORMATIONS AND MEASURED FOLIATIONS
    MASUR, H
    ANNALS OF MATHEMATICS, 1982, 115 (01) : 169 - 200
  • [15] Structure of K-interval exchange transformations: Induction, trajectories, and distance theorems
    Sébastien Ferenczi
    Luca Q. Zamboni
    Journal d'Analyse Mathématique, 2010, 112 : 289 - 328
  • [16] Structure of K-interval exchange transformations: Induction, trajectories, and distance theorems
    Ferenczi, Sebastien
    Zamboni, Luca Q.
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 112 : 289 - 328
  • [17] Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories
    Sébastien Ferenczi
    Charles Holton
    Luca Q. Zamboni
    Journal d’Analyse Mathématique, 2003, 89 : 239 - 276
  • [18] Structure of three-interval exchange transformations II: A combinatorial description of the trajectories
    Ferenczi, S
    Holton, C
    Zamboni, LQ
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1): : 239 - 276
  • [19] Structure of three-interval exchange transformations III: Ergodic and spectral properties
    Sébastien Ferenczi
    Charles Holton
    Luca Q. Zamboni
    Journal d’Analyse Mathématique, 2004, 93 : 103 - 138
  • [20] Structure of three-interval exchange transformations III: Ergodic and spectral properties
    Ferenczi, S
    Holton, C
    Zamboni, LQ
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1): : 103 - 138