Orbit structure of interval exchange transformations with flip

被引:12
|
作者
Nogueira, Arnaldo [1 ]
Pires, Benito [2 ]
Troubetzkoy, Serge [3 ]
机构
[1] Aix Marseille Univ 163, Inst Math Luminy, F-13288 Marseille 9, France
[2] Univ Sao Paulo, Dept Comp & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
[3] Aix Marseille Univ, Inst Math Luminy, Ctr Phys Theor, Federat Rech Unites Math Marseille, F-13288 Marseille 9, France
基金
巴西圣保罗研究基金会;
关键词
TRANSLATION;
D O I
10.1088/0951-7715/26/2/525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sharp bound on the number of invariant components of an interval exchange transformation (IET) is provided. More precisely, it is proved that the number of periodic components n(per) and the number of minimal components n(min) of an interval exchange transformation of n intervals satisfy n(per) + 2n(min) <= n. Moreover, it is shown that almost all IETs are typical, that is, all have stable periodic components and all the minimal components are robust (i.e. persistent under almost all small perturbations). Finally, we find all the possible values for the integer vector (n(per), n(min)) for all typical IET of n intervals.
引用
收藏
页码:525 / 537
页数:13
相关论文
共 50 条