A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation

被引:1
|
作者
Wang, Ting-chun [1 ,2 ]
Zhao, Li-mei [1 ]
Guo, Bo-ling [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Cahn-Hilliard equation; finite difference scheme; conservation of mass; dissipation of energy; convergence; iterative algorithm; TIME-STEPPING METHODS; SCHRODINGER-EQUATION; POLYMER MIXTURES; PHASE-SEPARATION; GALERKIN METHODS; ELEMENT-METHOD; INTERDIFFUSION; INTERFACES; STABILITY; ENERGY;
D O I
10.1007/s10255-015-0536-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a class of stable finite difference schemes for the initial-boundary value problem of the Cahn-Hilliard equation. These schemes are proved to inherit the total mass conservation and energy dissipation in the discrete level. The dissipation of the total energy implies boundness of the numerical solutions in the discrete H-1 norm. This in turn implies boundedness of the numerical solutions in the maximum norm and hence the stability of the difference schemes. Unique existence of the numerical solutions is proved by the fixed-point theorem. Convergence rate of the class of finite difference schemes is proved to be O(h(2) + tau(2)) with time step tau and mesh size h. An efficient iterative algorithm for solving these nonlinear schemes is proposed and discussed in detail.
引用
收藏
页码:863 / 878
页数:16
相关论文
共 50 条
  • [21] Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation
    Li-ping He
    Journal of Scientific Computing, 2009, 41 : 461 - 482
  • [22] Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation
    Bu, Linlin
    Mei, Liquan
    Wang, Ying
    Hou, Yan
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 392 - 414
  • [23] CONVERGENCE ANALYSIS OF THE ENERGY-STABLE NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION
    Kang, Xiao-Rong
    Wu, Yan-Mei
    Cheng, Ke-Long
    THERMAL SCIENCE, 2022, 26 (02): : 1037 - 1046
  • [24] Numerical analysis of energy stable weak Galerkin schemes for the Cahn-Hilliard equation
    Zhao, Wenju
    Guan, Qingguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [25] Energy-stable predictor-corrector schemes for the Cahn-Hilliard equation
    Zhang, Jun
    Jiang, Maosheng
    Gong, Yuezheng
    Zhao, Jia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [26] Asymptotics of large deviations of finite difference method for stochastic Cahn-Hilliard equation
    Jin, Diancong
    Sheng, Derui
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 1078 - 1106
  • [27] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [28] A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient
    Choo, SM
    Chung, SK
    Lee, YJ
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 207 - 219
  • [29] A conservative numerical method for the Cahn-Hilliard equation in complex domains
    Shin, Jaemin
    Jeong, Darae
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7441 - 7455
  • [30] An explicit conservative Saul'yev scheme for the Cahn-Hilliard equation
    Yang, Junxiang
    Li, Yibao
    Lee, Chaeyoung
    Lee, Hyun Geun
    Kwak, Soobin
    Hwang, Youngjin
    Xin, Xuan
    Kim, Junseok
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 217