Weighting variables in K-means clustering

被引:13
|
作者
Huh, Myung-Hoe [2 ]
Lim, Yong B. [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
关键词
K-means clustering; variable weighting; penalty constant;
D O I
10.1080/02664760802382533
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this study is to assign weights w1, , wm to m clustering variables Z1, , Zm, so that k groups were uncovered to reveal more meaningful within-group coherence. We propose a new criterion to be minimized, which is the sum of the weighted within-cluster sums of squares and the penalty for the heterogeneity in variable weights w1, , wm. We will present the computing algorithm for such k-means clustering, a working procedure to determine a suitable value of penalty constant and numerical examples, among which one is simulated and the other two are real.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 50 条
  • [41] PCA-Guided k-Means with Variable Weighting and Its Application to Document Clustering
    Honda, Katsuhiro
    Notsu, Akira
    Ichihashi, Hidetomo
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 282 - 292
  • [42] Document Clustering Using K-Means with Term Weighting as Similarity-Based Constraints
    Buatoom, Uraiwan
    Kongprawechnon, Waree
    Theeramunkong, Thanaruk
    SYMMETRY-BASEL, 2020, 12 (06):
  • [43] Using K-Means Clustering and Parameter Weighting for Partial-Discharge Noise Suppression
    Lin, Yu-Hsun
    IEEE TRANSACTIONS ON POWER DELIVERY, 2011, 26 (04) : 2380 - 2390
  • [44] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [45] Empirical Evaluation of K-Means, Bisecting K-Means, Fuzzy C-Means and Genetic K-Means Clustering Algorithms
    Banerjee, Shreya
    Choudhary, Ankit
    Pal, Somnath
    2015 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2015, : 172 - 176
  • [46] k*-means:: A new generalized k-means clustering algorithm
    Cheung, YM
    PATTERN RECOGNITION LETTERS, 2003, 24 (15) : 2883 - 2893
  • [47] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249
  • [48] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [49] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [50] Dynamic Incremental K-means Clustering
    Aaron, Bryant
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 308 - 313