COPIES OF c0(Γ) IN C(K, X) SPACES

被引:0
|
作者
Galego, Eloi Medina [1 ]
Hagler, James N. [2 ]
机构
[1] Univ Sao Paulo, Dept Math, BR-05508090 Sao Paulo, Brazil
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
c(0)(Gamma) spaces; C(K; X); spaces; Josefson-Nissenzweig-alpha (JN(alpha)) property; BANACH-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).
引用
收藏
页码:3843 / 3852
页数:10
相关论文
共 50 条
  • [41] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [42] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [43] Spaceability of sets in Lp x Lq and C0 x C0
    Glab, S.
    Strobin, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 451 - 465
  • [44] The structure of the Brauer group and crossed products of C0(X)-linear group actions on C0(X; K)
    Echterhoff, S
    Nest, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) : 3685 - 3712
  • [45] Twisted sums of c0 and C(K)-spaces: A solution to the CCKY problem
    Aviles, Antonio
    Marciszewski, Witold
    Plebanek, Grzegorz
    ADVANCES IN MATHEMATICS, 2020, 369
  • [46] On the distortion of a linear embedding of C(K) into a C0(Γ, X) space
    Candido, Leandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1201 - 1207
  • [47] Asymptotically isometric copies of c0 and l1 in certain Banach spaces
    Chen, DY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (02) : 618 - 625
  • [48] Asymptotically isometric copies of c0 and l1 in Bochner-spaces
    Dowling, PN
    Randrianantoanina, N
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (01) : 419 - 434
  • [49] Banach-lattice isomorphisms of C0(K;X) spaces which determine the locally compact spaces K
    Galego, Eloi Medina
    Rincon-Villamiza, Michael A.
    FUNDAMENTA MATHEMATICAE, 2017, 239 (02) : 185 - 200
  • [50] ON BANACH IDEALS SATISFYING c0(A(X, Y)) = A(X, c0(Y))
    Delgado, J. M.
    Pineiro, C.
    MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 130 - 140