ACCELERATION AND GLOBAL CONVERGENCE OF A FIRST-ORDER PRIMAL-DUAL METHOD FOR NONCONVEX PROBLEMS

被引:14
|
作者
Clason, Christian [1 ]
Mazurenko, Stanislav [2 ,3 ]
Valkonen, Tuomo [2 ,4 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[3] Masaryk Univ, Fac Sci, Kamenice 5,Bld A13, Brno 62500, Czech Republic
[4] Escuela Politec Nacl, Ladron de Guevara E11-253, Quito 170109, Ecuador
基金
英国工程与自然科学研究理事会;
关键词
acceleration; convergence; global; primal-dual; first order; nonconvex; OPTIMIZATION; MINIMIZATION; ALGORITHMS; OPERATORS;
D O I
10.1137/18M1170194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primal-dual hybrid gradient method, modified (PDHGM, also known as the Chambolle-Pock method), has proved very successful for convex optimization problems involving linear operators arising in image processing and inverse problems. In this paper, we analyze an extension to nonconvex problems that arise if the operator is nonlinear. Based on the idea of testing, we derive new step-length parameter conditions for the convergence in infinite-dimensional Hilbert spaces and provide acceleration rules for suitably (locally and/or partially) monotone problems. Importantly, we prove linear convergence rates as well as global convergence in certain cases. We demonstrate the efficacy of these step-length rules for PDE-constrained optimization problems.
引用
收藏
页码:933 / 963
页数:31
相关论文
共 50 条
  • [21] Precompact convergence of the nonconvex Primal-Dual Hybrid Gradient algorithm
    Sun, Tao
    Barrio, Roberto
    Cheng, Lizhi
    Jiang, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 15 - 27
  • [22] Comparison of Proximal First-Order Primal and Primal-Dual Algorithms via Performance Estimation
    Bousselmi, Nizar
    Pustelnik, Nelly
    Hendrickx, Julien M.
    Glineur, Francois
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2647 - 2651
  • [23] QUADRATIC CONVERGENCE IN A PRIMAL-DUAL METHOD
    MEHROTRA, S
    MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (03) : 741 - 751
  • [24] An Implementable First-Order Primal-Dual Algorithm for Structured Convex Optimization
    Ma, Feng
    Ni, Mingfang
    Zhu, Lei
    Yu, Zhanke
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [25] On the ergodic convergence rates of a first-order primal–dual algorithm
    Antonin Chambolle
    Thomas Pock
    Mathematical Programming, 2016, 159 : 253 - 287
  • [26] An improved first-order primal-dual algorithm with a new correction step
    Xingju Cai
    Deren Han
    Lingling Xu
    Journal of Global Optimization, 2013, 57 : 1419 - 1428
  • [27] Convergence Analysis of Primal Solutions in Dual First-order Methods
    Lu, Jie
    Johansson, Mikael
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 6861 - 6867
  • [28] An improved first-order primal-dual algorithm with a new correction step
    Cai, Xingju
    Han, Deren
    Xu, Lingling
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) : 1419 - 1428
  • [29] RUNNING PRIMAL-DUAL GRADIENT METHOD FOR TIME-VARYING NONCONVEX PROBLEMS
    Tang, Yujie
    Dall'Anese, Emiliano
    Bernstein, Andrey
    Low, Steven
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (04) : 1970 - 1990
  • [30] Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ
    Grossmann, C
    Klatte, D
    Kummer, B
    KYBERNETIKA, 2004, 40 (05) : 571 - 584