Hydrothermal Vapor-Phase Fluids on the Seafloor: Evidence From In Situ Observations

被引:9
|
作者
Li, Lianfu [1 ,2 ,3 ,4 ]
Zhang, Xin [1 ,2 ,3 ,4 ,5 ]
Luan, Zhendong [1 ,2 ,3 ]
Du, Zengfeng [1 ,2 ]
Xi, Shichuan [1 ,2 ,4 ]
Wang, Bing [1 ,2 ,4 ]
Lian, Chao [1 ,2 ]
Cao, Lei [1 ,2 ]
Yan, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, CAS Key Lab Marine Geol & Environm, Qingdao, Peoples R China
[2] Chinese Acad Sci, Inst Oceanol, Ctr Deep Sea Res, Qingdao, Peoples R China
[3] Pilot Natl Lab Marine Sci & Technol Qingdao, Lab Marine Geol, Qingdao, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
hydrothermal system; in situ detection; low-density vapor phase; Raman spectroscopy; vaporous water; RAMAN DETECTION; CARBON-DIOXIDE; CRITICAL-POINT; VENT FLUIDS; BACK-ARC; TEMPERATURE; EAST; SYSTEM; GEOCHEMISTRY; 5-DEGREES-S;
D O I
10.1029/2019GL085778
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Subseafloor phase separation is a common and significant process in hydrothermal systems and may result in a large of fluid composition differences. The temperatures of hydrothermal fluids are generally considered to be below the associated fluid boiling temperature due to mixing with ambient seawater and the phase separation process. However, we report here shimmering water with temperatures up to 383.3 degrees C observed in a hot overturned lake at the Yokosuka site, Okinawa Trough, East China Sea, where in situ Raman spectra suggest the presence of a superheated vapor phase. Hydrothermal vents similar to the low-density hydrothermal system found at the Yokosuka site have also been observed in many other regions. Therefore, much more attention should be given to the impacts of low-density hydrothermal fluid emanations on marine environments and resource distributions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] FORMATION OF NONCRYSTALLINE SOLIDS FROM VAPOR-PHASE
    MESSIER, R
    ROY, R
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (04): : 380 - 380
  • [22] FORMATION OF ICE DENDRITES FROM VAPOR-PHASE
    NENOW, D
    STOYANOVA, V
    JOURNAL OF CRYSTAL GROWTH, 1977, 41 (01) : 73 - 76
  • [23] GROWTH OF CERAMIC LAYERS FROM VAPOR-PHASE
    TEYSSANDIER, F
    SURFACES AND INTERFACES OF CERAMIC MATERIALS, 1989, 173 : 625 - 638
  • [24] Donors and acceptors in bulk ZnO grown by the hydrothermal, vapor-phase, and melt processes
    Look, David
    Zinc Oxide and Related Materials, 2007, 957 : 127 - 133
  • [25] CRYSTALLIZATION OF HGTE CRYSTALS FROM THE VAPOR-PHASE
    GOLACKI, Z
    DZIUBA, Z
    FURMANIK, Z
    MAKOWSKI, J
    JOURNAL OF CRYSTAL GROWTH, 1979, 46 (02) : 293 - 296
  • [26] TRANSPORT AND GROWTH OF GASE FROM VAPOR-PHASE
    VANEGMOND, GE
    LIETH, RMA
    MATERIALS RESEARCH BULLETIN, 1974, 9 (06) : 763 - 774
  • [27] Vapor-Phase Hydrothermal Growth of Novel Segmentally Configured Nanotubular Crystal Structure
    Liu, Porun
    Zhang, Haimin
    Liu, Hongwei
    Wang, Yun
    An, Taicheng
    Cai, Weiping
    Yang, Huagui
    Yao, Xiangdong
    Zhu, Guangshan
    Webb, Robyn
    Zhao, Huijun
    SMALL, 2013, 9 (18) : 3043 - 3050
  • [28] In situ measurement of effective vapor-phase porous media diffusion coefficients
    Johnson, PC
    Bruce, C
    Johnson, RL
    Kemblowski, MW
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (21) : 3405 - 3409
  • [29] In Situ Vapor-Phase Halide Exchange of Patterned Perovskite Thin Films
    Kim, Geemin
    An, Sol
    Hyeong, Seok-Ki
    Lee, Seoung-Ki
    Kim, Myungwoong
    Shin, Naechul
    SMALL, 2021, 17 (11)
  • [30] Spherulitic pyrite in seafloor hydrothermal deposits: Products of rapid crystallization from mixing fluids
    Xu, Qidong
    Scott, Steven D.
    Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, 2005, : 711 - 713