Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition

被引:33
|
作者
Lu, Zigui [1 ]
Hardy, John [1 ]
Templeton, Jared [1 ]
Stevenson, Jeffry [1 ]
Fisher, Daniel [2 ]
Wu, Naijuan [2 ]
Ignatiev, Alex [2 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Univ Houston, Ctr Adv Mat, Houston, TX 77024 USA
关键词
Bi-layer electrolyte; Pulsed laser deposition; Ohmic resistance; Stability; ELECTROCHEMICAL PERFORMANCE; COMPOSITE CATHODES; IT-SOFC; TEMPERATURE; FABRICATION; OPERATION; FILMS;
D O I
10.1016/j.jpowsour.2012.03.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anode-supported yttria stabilized zirconia (YSZ)/samaria doped ceria (SDC) bi-layer electrolytes with uniform thickness and high density were fabricated by pulsed laser deposition at 1000 degrees C. Fuel cells with such bi-layer electrolytes were fabricated and tested, yielding open circuit voltages from 0.94 to 1.0 V at 600-700 degrees C. Power densities from 0.4 to 1.0 W cm(-2) at 0.7V were achieved in air at temperatures of 600-700 degrees C. Cell performance was improved in flowing oxygen, with an estimated peak power density of over 2 W cm(-2) at 650 degrees C, assuming the same overall resistance over the entire range of current density. The high cell performance was attributed to the very low ohmic resistance of the fuel cell, owing to the small thickness of the electrolyte. Stable performance was also demonstrated in that the voltage of the fuel cell showed very little change at a constant current density of 1 A cm(-2) during more than 400h of operation at 650 degrees C in flowing oxygen. SEM analysis of the fuel cell after testing showed that the bi-layer electrolyte had retained its chemical and mechanical integrity. Published by Elsevier B.V.
引用
收藏
页码:292 / 296
页数:5
相关论文
共 50 条
  • [21] The effect of anode thickness on the performance of anode-supported solid oxide fuel cells
    Kim, JW
    Virkar, AV
    SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 830 - 839
  • [22] Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells
    Kim, SD
    Hyun, SH
    Moon, J
    Kim, JH
    Song, RH
    JOURNAL OF POWER SOURCES, 2005, 139 (1-2) : 67 - 72
  • [23] Operation of anode-supported thin electrolyte film solid oxide fuel cells at 800°C and below
    de Haart, LGJ
    Mayer, K
    Stimming, U
    Vinke, IC
    JOURNAL OF POWER SOURCES, 1998, 71 (1-2) : 302 - 305
  • [24] Measurement of oxygen chemical potential in thin electrolyte film, anode-supported solid oxide fuel cells
    Lim, Hyung-Tae
    Virkar, Anil V.
    JOURNAL OF POWER SOURCES, 2008, 180 (01) : 92 - 102
  • [25] A high performance, anode-supported solid oxide fuel cell operating on direct alcohol
    Jiang, Y
    Virkar, AV
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) : A706 - A709
  • [26] MICROSTRUCTURE MODIFICATION IN THE ELECTRODES TO ENHANCE PERFORMANCE OF THE ANODE-SUPPORTED SOLID OXIDE FUEL CELL
    Yeh, Chun-Yen
    Lin, Tai-Nan
    Kuo, Hong-Yi
    Liao, Ming-Wei
    Chen, Yu-Ming
    Kao, Wei-Xin
    Lee, Ruey-Yi
    Lee, Sheng-Wei
    PROCEEDINGS OF THE 42ND INTERNATIONAL CONFERENCE ON ADVANCED CERAMICS AND COMPOSITES: CERAMIC ENGINEERING AND SCIENCE PROCEEDINGS, VOL 39, ISSUE 2, 2019, : 113 - 121
  • [27] High-performance anode-supported solid oxide fuel cell with impregnated electrodes
    Osinkin, D. A.
    Bogdanovich, N. M.
    Beresnev, S. M.
    Zhuravlev, V. D.
    JOURNAL OF POWER SOURCES, 2015, 288 : 20 - 25
  • [28] Performance of an Anode-supported Solid Oxide Fuel Cell in a Mixed-gas Configuration
    Nguyen Xuan Phuong Vo
    Nam, Suk Woo
    Yoon, Sung Pil
    Han, Jonghee
    Lim, Tae-Hoon
    Hong, Seong-Ahn
    NEW DEVELOPMENT AND APPLICATION IN CHEMICAL REACTION ENGINEERING, 4TH ASIA-PACIFIC CHEMICAL REACTION ENGINEERING SYMPOSIUM (APCRE 05), 2006, 159 : 597 - 600
  • [29] Processing of high-performance anode-supported planar solid oxide fuel cell
    Basu, R. N.
    Das Sharma, A.
    Dutta, Atanu
    Mukhopadhyay, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) : 5748 - 5754
  • [30] Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell
    Song, Rak-Hyun
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2005, 8 (02): : 88 - 93