Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites

被引:1
|
作者
Haghbin, Amin [2 ]
Naderi, Aliasghar [1 ]
Mokhtari, S. Abolfazl [1 ]
机构
[1] Imam Ali Univ, Flight & Engn Dept, Imam Khomeini St,POB 13178-93471, Tehran, Iran
[2] Imam Ali Univ, Fac Engn, Tehran, Iran
关键词
Fiber-reinforced composites; Carbon nanotubes; Electrophoretic deposition; High velocity impact; Interphase; ELECTROPHORETIC DEPOSITION; FIBER/EPOXY COMPOSITE; SHEAR-STRENGTH; PERFORMANCE; PROJECTILES; BEHAVIOR; STRAIN;
D O I
10.1007/s40430-022-03881-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP's interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% & 20% regarding simple control GFRPs and 35% & 16% regarding conventional specimen, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites
    Wu L.
    Ou Y.
    Mao D.
    Zhu L.
    Liu L.
    Li H.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (10): : 5611 - 5620
  • [22] Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber
    Cheon, Jinsil
    Kim, Minkook
    COMPOSITES PART B-ENGINEERING, 2021, 217
  • [23] Experimental and analytical investigation on the interlaminar shear strength of carbon fiber composites reinforced with carbon nanofiber z-threads
    Kirmse, Sebastian
    Ranabhat, Bikash
    Hsiao, Kuang-Ting
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [24] Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes
    Kim, Hansang
    COMPOSITES RESEARCH, 2011, 24 (05): : 34 - 38
  • [25] High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites
    Grimmer, Christopher S.
    Dharan, C. K. H.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (13) : 4487 - 4492
  • [26] High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites
    Christopher S. Grimmer
    C. K. H. Dharan
    Journal of Materials Science, 2008, 43 : 4487 - 4492
  • [27] Experimental study on the strength loss of carbon fiber in unidirectional carbon/aluminum composites
    Zhou, YX
    Xia, YM
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2002, 21 (09) : 743 - 746
  • [28] Low-velocity impact and interlaminar damage mechanism of carbon fiber-metal mesh reinforced composites
    Wan Y.
    Liu Y.
    Li H.
    Yao J.
    Yu Y.
    Zhao Z.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6351 - 6362
  • [29] The oxidation of carbon fiber on the interlaminar shear strength and tribological properties of high-density polyethylene composites
    Tang, Gang
    Zang, Zhaoliang
    Huang, Wanjuan
    Huang, Jiahui
    Wang, Dongmei
    Wei, Gaofeng
    Mi, Weijian
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2014, 27 (05) : 586 - 593
  • [30] An experimental study of low velocity impact damage in woven fiber composites
    Siow, YP
    Shim, VPW
    JOURNAL OF COMPOSITE MATERIALS, 1998, 32 (12) : 1178 - 1202