TRANSFER LEARNING OF A CONVOLUTIONAL NEURAL NETWORK FOR HEP-2 CELL IMAGE CLASSIFICATION

被引:60
|
作者
Ha Tran Hong Phan [1 ]
Kumar, Ashnil [1 ]
Kim, Jinman [1 ]
Feng, Dagan [1 ]
机构
[1] Univ Sydney, Fac Engn & Informat Technol, BMIT Res Grp, Inst Biomed Engn & Technol, Sydney, NSW 2006, Australia
关键词
staining patterns; classification; indirect immunofluorescence; deep convolutional neural networks; transfer learning;
D O I
10.1109/ISBI.2016.7493483
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The recognition of the staining patterns of Human Epithelial-2 (HEp-2) cells in indirect immunofluorescence (IIF) images is essential for the diagnosis of several autoimmune diseases. The main challenge is the extraction and selection of the optimal feature set that not only represents the cells' characteristics, but also distinguishes between the classes of cell images with similar appearances. In this paper, we propose a system to classify HEp-2 cell images by applying transfer learning from a pre-trained deep convolutional neural network (CNN) to extract the generic features and then using a feature selection method to get the most relevant features for classification. Although the CNN was trained with a dataset very different from cell images, our system is capable of extracting important semantic features that represent a HEp-2 cell image. When evaluated on the ICPR2012 cell dataset, our method outperforms all other methods on the dataset of the 2012 competition, and demonstrates stable performance under different test protocols.
引用
收藏
页码:1208 / 1211
页数:4
相关论文
共 50 条
  • [41] Discovering Discriminative Cell Attributes for HEp-2 Specimen Image Classification
    Wiliem, Arnold
    Hobson, Peter
    Lovell, Brian C.
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 423 - 430
  • [42] A Deep Feature Extraction Method for HEp-2 Cell Image Classification
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    ELECTRONICS, 2019, 8 (01)
  • [43] Feature Importance for Human Epithelial (HEp-2) Cell Image Classification
    Gupta, Vibha
    Bhavsar, Arnav
    JOURNAL OF IMAGING, 2018, 4 (03)
  • [44] Tread Pattern Image Classification using Convolutional Neural Network Based on Transfer Learning
    Liu, Ying
    Zhang, Shuai
    Wang, Fuping
    Ling, Nam
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2018, : 300 - 305
  • [45] Hyperspectral Image Classification Based on a Shuffled Group Convolutional Neural Network with Transfer Learning
    Liu, Yao
    Gao, Lianru
    Xiao, Chenchao
    Qu, Ying
    Zheng, Ke
    Marinoni, Andrea
    REMOTE SENSING, 2020, 12 (11)
  • [46] Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning
    Xie, Fuding
    Gao, Quanshan
    Jin, Cui
    Zhao, Fengxia
    REMOTE SENSING, 2021, 13 (05) : 1 - 17
  • [47] COMPACT CONVOLUTIONAL NEURAL NETWORK TRANSFER LEARNING FOR SMALL-SCALE IMAGE CLASSIFICATION
    Li, Zengxi
    Song, Yan
    Mcloughlin, Ian
    Dai, Lirong
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2737 - 2741
  • [48] HEp-2 Specimen Cell Detection and Classification Using Very Deep Convolutional Neural Networks-Based Cell Shape
    Jorgensen, Brandon
    AL-Dulaimi, Khamael
    Banks, Jasmine
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 347 - 352
  • [49] Hyperspectral Image Classification With Convolutional Neural Network and Active Learning
    Cao, Xiangyong
    Yao, Jing
    Xu, Zongben
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4604 - 4616
  • [50] Deep cross residual network for HEp-2 cell staining pattern classification
    Shen, Linlin
    Jia, Xi
    Li, Yuexiang
    PATTERN RECOGNITION, 2018, 82 : 68 - 78