A topological splitting theorem for sub-Riemannian manifolds

被引:0
|
作者
Itoh, Kazuki [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Sub-Riemannian manifold; Measure contraction property; Splitting theorem; METRIC-MEASURE-SPACES; RICCI CURVATURE; GEOMETRY;
D O I
10.1007/s10711-012-9824-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an analogue of the Cheeger-Gromoll splitting theorem for sub-Riemannian manifolds with the measure contraction property instead of the nonnegativity of the Ricci curvature. If such a sub-Riemannian manifold contains a straight line, then the manifold splits diffeomorphically, where the splitting is not necessarily isometric. We prove that such a sub-Riemannian manifold containing a straight line cannot split isometrically under some typical condition in sub-Riemannian geometry. Heisenberg groups are such examples.
引用
收藏
页码:177 / 196
页数:20
相关论文
共 50 条
  • [41] Volume and distance comparison theorems for sub-Riemannian manifolds
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    Munive, Isidro H.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2005 - 2027
  • [42] Conformality and Q-harmonicity in sub-Riemannian manifolds
    Capogna, Luca
    Citti, Giovanna
    Le Donne, Enrico
    Ottazzi, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 67 - 124
  • [43] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Grong, Erlend
    Markina, Irina
    Vasil'ev, Alexander
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2474 - 2515
  • [44] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Erlend Grong
    Irina Markina
    Alexander Vasil’ev
    The Journal of Geometric Analysis, 2015, 25 : 2474 - 2515
  • [45] Stochastic completeness and volume growth in sub-Riemannian manifolds
    Munive, Isidro H.
    MANUSCRIPTA MATHEMATICA, 2012, 138 (3-4) : 299 - 313
  • [46] Surface measure on, and the local geometry of, sub-Riemannian manifolds
    Sebastiano Don
    Valentino Magnani
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [47] Stochastic completeness and volume growth in sub-Riemannian manifolds
    Isidro H. Munive
    Manuscripta Mathematica, 2012, 138 : 299 - 313
  • [48] Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds
    Ivan Beschastnyi
    Karen Habermann
    Alexandr Medvedev
    The Journal of Geometric Analysis, 2022, 32
  • [49] STOCHASTIC ANALYSIS ON SUB-RIEMANNIAN MANIFOLDS WITH TRANSVERSE SYMMETRIES
    Baudoin, Fabrice
    ANNALS OF PROBABILITY, 2017, 45 (01): : 56 - 81
  • [50] Non-minimality of spirals in sub-Riemannian manifolds
    Roberto Monti
    Alessandro Socionovo
    Calculus of Variations and Partial Differential Equations, 2021, 60