More Accurate Formulas for Determination of Absolute Atom Concentration Using Electron Energy-Loss Spectroscopy

被引:0
|
作者
Hadji, Noureddine [1 ]
机构
[1] Univ Badji Mokhtar, Dept Phys, BP 12, Annaba 23000, Annaba, Algeria
关键词
Dimensionless function representing all ideal "free-electron" materials; plasmon cutoff vector; plasmon scattering cross-section per atom species; application of techniques; EELS; EELS;
D O I
10.1017/S1431927616011776
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When the value of the dispersion coefficient is "greatly different from 0.5," as is the case for "freeelectron" materials such as sodium (Na), the approximate expression for the volume plasmon critical wave vector (PCV) used by Hadji stops being valid and a different, more precise, expression must be used. Here a more accurate PCV formula is used to get a more accurate expression for plasmon scattering cross-section per atom (PSCA) species. This PSCA is then employed to calculate some physical quantities for several "free-electron" materials and together with the techniques from the quoted paper to determine values for physical quantities from amorphous silicon (a-Si) experimental data. The program source used to obtain these values is supplied. Any valid formula for the PSCA species is, in fact, relevant for use together with the two quoted techniques. The PCV and the dispersion coefficient have upper limits. Negative dispersion coefficient values are allowed. A PCV-related dimensionless universal function that can represent all ideal "free-electron" materials is given. "Not greatly different from 0.5" is mathematically expressed.
引用
收藏
页码:1381 / 1388
页数:8
相关论文
共 50 条
  • [31] Development of electron energy-loss spectroscopy for nanoscience
    Yuan, Jun
    Wang, Zhiwei
    Fu, Xin
    Xie, Lin
    Sun, Yuekui
    Gao, Shangpeng
    Jiang, Jun
    Hu, Xuerang
    Xu, Chen
    MICRON, 2008, 39 (06) : 658 - 665
  • [32] ELECTRON ENERGY-LOSS SPECTROSCOPY OF NAPHTHALENE VAPOR
    HUEBNER, RH
    MIELCZAR.SR
    KUYATT, CE
    CHEMICAL PHYSICS LETTERS, 1972, 16 (03) : 464 - &
  • [33] In Situ Electron Energy-Loss Spectroscopy in Liquids
    Holtz, Megan E.
    Yu, Yingchao
    Gao, Jie
    Abruna, Hector D.
    Muller, David A.
    MICROSCOPY AND MICROANALYSIS, 2013, 19 (04) : 1027 - 1035
  • [34] ELECTRON ENERGY-LOSS SPECTROSCOPY OF MOLYBDENUM DISILICIDE
    RASTOGI, RS
    VANKAR, VD
    BHATANAGAR, MC
    CHOPRA, KL
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (05): : 2957 - 2959
  • [35] Femtosecond MeV Electron Energy-Loss Spectroscopy
    Li, R. K.
    Wang, X. J.
    PHYSICAL REVIEW APPLIED, 2017, 8 (05):
  • [36] Atomic resolution electron energy-loss spectroscopy
    Klie, RF
    Arslan, I
    Browning, ND
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 143 (2-3) : 105 - 115
  • [37] ELECTRON ENERGY-LOSS SPECTROSCOPY ON METALLIC SUPERLATTICES
    BABIKER, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (22): : 3321 - 3335
  • [38] Electron energy-loss spectroscopy of carbon onions
    Tomita, S
    Fujii, M
    Hayashi, S
    Yamamoto, K
    CHEMICAL PHYSICS LETTERS, 1999, 305 (3-4) : 225 - 229
  • [39] Concentration limits for the measurement of boron by electron energy-loss spectroscopy and electron-spectroscopic imaging
    Zhu, Y
    Egerton, RF
    Malac, M
    ULTRAMICROSCOPY, 2001, 87 (03) : 135 - 145
  • [40] Absolute determination of optical constants by reflection electron energy loss spectroscopy
    Xu, H.
    Da, B.
    Toth, J.
    Tokesi, K.
    Ding, Z. J.
    PHYSICAL REVIEW B, 2017, 95 (19)