Nonequivalent q-ary perfect codes

被引:6
|
作者
Etzion, T
机构
[1] Computer Science Department, Royal Holloway, University of London, Egham
[2] Computer Science Department, Technion - Israel Inst. of Technol.
关键词
Hamming codes; isomorphism; nonequivalent codes; perfect codes;
D O I
10.1137/S0895480194277903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a set of q(qcn) nonequivalent q-ary perfect single error-correcting codes of length n over GF(q) for sufficiently large n and a constant c = 1/q - epsilon. The construction is based on a small subcode A of the q-ary Hamming code of length n for which A and q - 1 of its cosets A(1),..., A(q-1) cover the same subset V. We show a few isomorphic and nonisomorphic ways in which A can be chosen, and we prove the uniqueness of these ways to choose A.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条
  • [21] On the q-ary image of cyclic codes
    Jensen, JM
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 189 - 196
  • [22] On the construction of q-ary equidistant codes
    Bogdanova, G. T.
    Zinoviev, V. A.
    Todorov, T. J.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (04) : 280 - 302
  • [23] On the construction of q-ary equidistant codes
    G. T. Bogdanova
    V. A. Zinoviev
    T. J. Todorov
    Problems of Information Transmission, 2007, 43 : 280 - 302
  • [24] On the number of q-ary quasi-perfect codes with covering radius 2
    Alexander M. Romanov
    Designs, Codes and Cryptography, 2022, 90 : 1713 - 1719
  • [25] GRAPH THEORETIC Q-ARY CODES
    BOBROW, LS
    HAKIMI, SL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (02) : 215 - +
  • [26] The q-Ary Antiprimitive BCH Codes
    Zhu, Hongwei
    Shi, Minjia
    Wang, Xiaoqiang
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1683 - 1695
  • [27] On normal and subnormal q-ary codes
    Lobstein, Antoine C., 1600, (35):
  • [28] On the number of q-ary quasi-perfect codes with covering radius 2
    Romanov, Alexander M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (08) : 1713 - 1719
  • [29] ON (Q,1)-SUBNORMAL Q-ARY COVERING CODES
    HONKALA, I
    DISCRETE APPLIED MATHEMATICS, 1994, 52 (03) : 213 - 221
  • [30] LOWER BOUNDS FOR Q-ARY COVERING CODES
    CHEN, W
    HONKALA, IS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 664 - 671