SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

被引:2
|
作者
Lee, Choonkyu [1 ,2 ,3 ]
Min, Hyunsoo [4 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 157747, South Korea
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 157747, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[4] Univ Seoul, Dept Phys, Seoul 130743, South Korea
关键词
Duality; Zwanziger; Electrodynamics; Dilaton; Axion; Born-Infeld; QUANTUM-FIELD-THEORY; SELF-DUALITY; INVARIANCE; CHARGE; ELECTRODYNAMICS; LORENTZ; AXION;
D O I
10.1016/j.aop.2013.09.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A(mu) and B-mu in a judicious way. On the two potentials A(mu) and B-mu the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born-Infeld electrodynamics which can be important for D-brane dynamics in string theory. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:328 / 343
页数:16
相关论文
共 50 条
  • [41] Electric-magnetic duality and Z2 symmetry enriched Abelian lattice gauge theory
    Jia, Zhian
    Kaszlikowski, Dagomir
    Tan, Sheng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (25)
  • [42] Spherical functions for the semisimple symmetric pair (Sp(2, R), SL(2, C))
    Moriyama, T
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (04): : 828 - 865
  • [43] Two-potential theory of electric and magnetic charges via duality transformation
    Chatterjee, Chandrasekhar
    Mitra, Indrajit
    Sharatchandra, H. S.
    PHYSICS LETTERS B, 2012, 710 (01) : 223 - 229
  • [44] N=2 electric-magnetic duality in a chiral background
    deWit, B
    NUCLEAR PHYSICS B, 1996, : 191 - 200
  • [45] SL(2,R) YANG-MILLS THEORY ON A CIRCLE
    BENGTSSON, I
    HALLIN, J
    MODERN PHYSICS LETTERS A, 1994, 9 (35) : 3245 - 3253
  • [46] QUANTIZATION OF SL(2,R) CHERN-SIMONS THEORY
    KILLINGBACK, TP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) : 1 - 16
  • [47] HAMILTONIAN ANALYSIS OF SL(2,R) SYMMETRY IN LIOUVILLE THEORY
    BLAGOJEVIC, M
    VASILIC, M
    VUKASINAC, T
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (05) : 1155 - 1175
  • [48] The SL(2,R)/U(1) WZNW field theory
    Müller, U
    Weigt, G
    THEORY OF ELEMENTARY PARTICLES, 1998, : 117 - 122
  • [49] Treatment of extremely low frequency magnetic and electric field sensors via the rules of electromagnetic duality
    Kaplan, Ben-Zion
    Suissa, Uri
    IEEE Transactions on Magnetics, 1998, 34 (4 pt 2): : 2298 - 2305
  • [50] Treatment of extremely low frequency magnetic and electric field sensors via the rules of electromagnetic duality
    Kaplan, BZ
    Suissa, U
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (04) : 2298 - 2305