Linear Analysis of Converging Richtmyer-Meshkov Instability in the Presence of an Azimuthal Magnetic Field

被引:6
|
作者
Bakhsh, Abeer [1 ]
Samtaney, Ravi [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Fluid & Plasma Simulat Lab, Appl Math & Computat Sci, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Mech Engn, Phys Sci & Engn Div, Fluid & Plasma Simulat Lab, Thuwal 239556900, Saudi Arabia
关键词
INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR; SHOCK-WAVES; PROPAGATION; IGNITION; SHELLS; FLUIDS;
D O I
10.1115/1.4038487
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability (RTI). In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and antiparallel to the interface that transport vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [42] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [43] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [44] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [45] Richtmyer-Meshkov instability with a rippled reshock
    Zhang, Yumeng
    Zhao, Yong
    Ding, Juchun
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [46] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [47] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [48] Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of an inclined magnetic field
    Sun, Y. B.
    Gou, J. N.
    Zeng, R. H.
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [49] A STUDY OF LINEAR, NONLINEAR AND TRANSITION STAGES OF RICHTMYER-MESHKOV INSTABILITY
    ALESHIN, AN
    LAZAREVA, EV
    ZAITSEV, SG
    ROZANOV, VB
    GAMALII, EG
    LEBO, IG
    DOKLADY AKADEMII NAUK SSSR, 1990, 310 (05): : 1105 - 1108
  • [50] Theory of the ablative Richtmyer-Meshkov instability
    Goncharov, VN
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2091 - 2094