A TIGHT LINEAR TIME (1/2)-APPROXIMATION FOR UNCONSTRAINED SUBMODULAR MAXIMIZATION

被引:144
|
作者
Buchbinder, Niv [1 ]
Feldman, Moran [2 ]
Naor, Joseph
Schwartz, Roy [3 ]
机构
[1] Tel Aviv Univ, Stat & Operat Res Dept, IL-69978 Tel Aviv, Israel
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
关键词
submodular functions; approximation algorithms; linear time; APPROXIMATION ALGORITHMS; CUT; MINIMIZATION; LOCATION;
D O I
10.1137/130929205
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the Unconstrained Submodular Maximization problem in which we are given a nonnegative submodular function f : 2(N) -> R+, and the objective is to find a subset S subset of N maximizing f(S). This is one of the most basic submodular optimization problems, having a wide range of applications. Some well-known problems captured by Unconstrained Submodular Maximization include Max-Cut, Max-DiCut, and variants of Max-SAT and maximum facility location. We present a simple randomized linear time algorithm achieving a tight approximation guarantee of 1/2, thus matching the known hardness result of Feige, Mirrokni, and Vondrak [SIAM J. Comput., 40 (2011), pp. 1133-1153]. Our algorithm is based on an adaptation of the greedy approach which exploits certain symmetry properties of the problem.
引用
收藏
页码:1384 / 1402
页数:19
相关论文
共 50 条
  • [41] An Optimal Approximation for Submodular Maximization under a Matroid Constraint in the Adaptive Complexity Model
    Balkanski, Eric
    Rubinstein, Aviad
    Singer, Yaron
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 66 - 77
  • [42] Hardness and approximation of submodular minimum linear ordering problems
    Farhadi, Majid
    Gupta, Swati
    Sun, Shengding
    Tetali, Prasad
    Wigal, Michael C.
    MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 277 - 318
  • [43] Approximation Algorithms for Maximization of k-Submodular Function Under a Matroid Constraint
    Liu, Yuezhu
    Sun, Yunjing
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (06): : 1633 - 1641
  • [44] Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order
    Korula, Nitish
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 889 - 898
  • [45] ONLINE SUBMODULAR WELFARE MAXIMIZATION: GREEDY BEATS 1/2 IN RANDOM ORDER
    Korula, Nitish
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    SIAM JOURNAL ON COMPUTING, 2018, 47 (03) : 1056 - 1086
  • [46] A tight2-approximation for linear 3-cut
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Madan, Vivek
    MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 411 - 443
  • [47] Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties
    Xu, Dachuan
    Wang, Fengmin
    Du, Donglei
    Wu, Chenchen
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 336 - 345
  • [48] Online Non-monotone DR-Submodular Maximization: 1/4 Approximation Ratio and Sublinear Regret
    Feng, Junkai
    Yang, Ruiqi
    Zhang, Haibin
    Zhang, Zhenning
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 118 - 125
  • [49] A tight √2-approximation for Linear 3-Cut
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Madan, Vivek
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1393 - 1406
  • [50] An Approximation Algorithm for the h-Hop Independently Submodular Maximization Problem and Its Applications
    Xu, Wenzheng
    Xie, Hongbin
    Wang, Chenxi
    Liang, Weifa
    Jia, Xiaohua
    Xu, Zichuan
    Zhou, Pan
    Wu, Weigang
    Chen, Xiang
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (03) : 1216 - 1229