Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion

被引:40
|
作者
Yoon, Eun Yoo [1 ,2 ]
Lee, Dong Jun [3 ]
Park, Byungho [3 ]
Akbarpour, M. R. [4 ]
Farvizi, M. [4 ]
Kim, Hyoung Seop [1 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Ctr Adv Aerosp Mat, Pohang 790784, South Korea
[2] KIMS, Light Met Div, Mat Deformat Dept, Chang Won 641831, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
[4] MERC, Tehran, Iran
基金
新加坡国家研究基金会;
关键词
composites; severe plastic deformation; grain refinement; electron back scattering diffraction (EBSD); scanning/transmission electron microscopy; MECHANICAL-PROPERTIES; PURE COPPER; MICROSTRUCTURES; COMPOSITES; EVOLUTION; BEHAVIOR;
D O I
10.1007/s12540-013-5004-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, the processing of metallic materials via severe plastic deformation has been widely applied to manufacture bulk specimens of ultrafine grained/nanocrystalline structures. In this study, bulk nanocomposites of carbon nanotube-reinforced Cu were manufactured by consolidation of mixtures of coarse grained Cu powders and CNTs of two volume fractions (5 vol% and 10 vol%) using high-pressure torsion, a typical SPD method. The effects of CNT reinforcements on the microstructural evolution of the Cu matrix were investigated using electron backscatter diffraction and scanning/transmission electron microscopy; the results showed that the Cu matrix grain size was reduced to similar to 114 nm, and the CNTs were well dispersed in the matrix. Due to the effect of the UFG Cu and CNTs, the tensile strength (350 MPa) of the nanocomposite was higher than that (190 MPa) of Cu processed by the powder HPT process without CNTs. However, the Cu-CNT 10 vol% indicated a decreased tensile strength due to an increased interface area between the matrix and CNTs at high volume fractions of CNTs.
引用
收藏
页码:927 / 932
页数:6
相关论文
共 50 条
  • [41] Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion
    Sabbaghianrad, Shima
    Langdon, Terence G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 655 : 36 - 43
  • [42] Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion
    Jittraporn Wongsa-Ngam
    Megumi Kawasaki
    Terence G. Langdon
    Journal of Materials Science, 2012, 47 : 7782 - 7788
  • [43] Improved Tensile Strength of Carbon Nanotube Reinforced Aluminum Composites Processed by Powder Metallurgy
    Liao, Jinzhi
    Tan, Ming-Jen
    ADVANCES IN MATERIALS PROCESSING X, 2012, 500 : 651 - 656
  • [44] Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion
    Lee, Han-Joo
    Han, Jae-Kyung
    Janakiraman, Shravan
    Ahn, Byungmin
    Kawasaki, Megumi
    Langdon, Terence G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 686 : 998 - 1007
  • [45] Microstructure and mechanical properties of pure Cu processed by high-pressure torsion
    Edalati, Kaveh
    Fujioka, Tadayoshi
    Horita, Zenji
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 497 (1-2): : 168 - 173
  • [46] Microstructure evolution and strength response of ultrafine grain medium carbon steel processed by high pressure torsion
    Zrnik, Jozef
    Pippan, Reinhard
    Scheriau, Stephan
    15TH INTERNATIONAL CONFERENCE ON THE STRENGTH OF MATERIALS (ICSMA-15), 2010, 240
  • [47] The fabrication of high strength Zr/Nb nanocomposites using high-pressure torsion
    Luo, Dan
    Huminiuc, Teodor
    Huang, Yi
    Polcar, Tomas
    Langdon, Terence G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 790
  • [48] Optimizing matrix and fiber/matrix interface to achieve combination of strength, ductility and toughness in carbon nanotube-reinforced carbon/carbon composites
    Feng, Lei
    Li, Kezhi
    Xue, Bei
    Fu, Qiangang
    Zhang, Leilei
    MATERIALS & DESIGN, 2017, 113 : 9 - 16
  • [49] Grain refinement and enhanced diffusion of W-Cu gradient material processed by high pressure torsion with floating cavity
    Wang, Xue
    Chen, Guangqing
    Wang, Mingming
    Xue, Keming
    Li, Ping
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2022, 106
  • [50] Microstructural characterization and enhanced tensile and tribological properties of Cu-SiC nanocomposites developed by high-pressure torsion
    Akbarpour, M. R.
    Asl, F. Gharibi
    Mirabad, H. Mousa
    Kim, H. S.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 4038 - 4051