Convergence properties of a class of nonlinear conjugate gradient methods

被引:8
|
作者
Liu, Jinkui [1 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Unconstrained optimization; Conjugate gradient method; Strong Wolfe line search; Descent property; Convergence property; UNCONSTRAINED OPTIMIZATION; GLOBAL CONVERGENCE; LINE SEARCH; DESCENT; MINIMIZATION;
D O I
10.1016/j.cor.2013.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Conjugate gradient methods are a class of important methods for unconstrained optimization problems, especially when the dimension is large. In this paper, we study a class of modified conjugate gradient methods based on the famous LS conjugate gradient method, which produces a sufficient descent direction at each iteration and converges globally provided that the line search satisfies the strong Wolfe condition. At the same time, a new specific nonlinear conjugate gradient method is constructed. Our numerical results show that the new method is very efficient for the given test problems by comparing with the famous LS method, PRP method and CG-DESCENT method. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2656 / 2661
页数:6
相关论文
共 50 条
  • [31] Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence
    Dong, Xiao Liang
    Liu, Hongwei
    Xu, Yin Ling
    Yang, Xi Mei
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1421 - 1432
  • [32] Global Convergence Properties of Conjugate Gradient Methods for Optimal Control Problems
    Chen Xuesong
    Cai Shuting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2542 - 2547
  • [33] Global Convergence of a Nonlinear Conjugate Gradient Method
    Liu Jin-kui
    Zou Li-min
    Song Xiao-qian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [34] Convergence of conjugate gradient methods with constant stepsizes
    Dai, Yu-Hong
    OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (06): : 895 - 909
  • [35] Global convergence of a family of conjugate gradient methods
    Yu, Hongxia
    Du, Xuewu
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1998, 15 (03): : 69 - 73
  • [36] Nonlinear conjugate gradient methods in micromagnetics
    Fischbacher, J.
    Kovacs, Alexander
    Oezelt, Harald
    Schrefl, T.
    Exl, L.
    Fidler, J.
    Suess, D.
    Sakuma, N.
    Yano, M.
    Kato, A.
    Shoji, T.
    Manabe, A.
    AIP ADVANCES, 2017, 7 (04)
  • [38] Conjugate gradient methods and nonlinear optimization
    Nocedal, J
    LINEAR AND NONLINEAR CONJUGATE GRADIENT-RELATED METHODS, 1996, : 9 - 23
  • [39] NONLINEAR CONJUGATE GRADIENT METHODS WITH SUFFICIENT DESCENT PROPERTIES FOR UNCONSTRAINED OPTIMIZATION
    Nakamura, Wataru
    Narushima, Yasushi
    Yabe, Hiroshi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (03) : 595 - 619
  • [40] Global convergence of a descent nonlinear conjugate gradient method
    Li, Xiaoyong
    Liu, Hailin
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, : 79 - 84