Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor

被引:4
|
作者
Bayer-Fluckiger, Eva [1 ]
Maciak, Piotr [1 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL FSB MATHGEOM CSAG, CH-1015 Lausanne, Switzerland
关键词
Root Lattice; Number Field; Integral Basis; Dual Lattice; Composite Conductor;
D O I
10.1007/s00208-013-0932-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to give upper bounds for the Euclidean minima of abelian fields of odd prime power conductor. In particular, these bounds imply Minkowski's conjecture for totally real number fields of conductor p(r), where p is an odd prime number and r >= 2.
引用
收藏
页码:1071 / 1089
页数:19
相关论文
共 31 条