-trees and laminations for free groups I: algebraic laminations
被引:37
|
作者:
Coulbois, Thierry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, FranceUniv Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, France
Coulbois, Thierry
[1
]
Hilion, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, FranceUniv Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, France
Hilion, Arnaud
[1
]
Lustig, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, FranceUniv Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, France
Lustig, Martin
[1
]
机构:
[1] Univ Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, France
来源:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
|
2008年
/
78卷
关键词:
D O I:
10.1112/jlms/jdn052
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper is the first of a sequence of three papers, where the concept of a real tree dual to a measured geodesic lamination in a hyperbolic surface is generalized to arbitrary real trees provided with a (very small) action of a free group by isometries. Laminations for free groups are defined with care in three different approaches: algebraic laminations, symbolic laminations, and laminary languages. The topology on the space of laminations and the action of the outer automorphisms group are detailed.
机构:
Tokyo Univ Social Welf, Dept Educ, Sannoncho 2020-1, Isesaki City, Gunma 3720831, JapanTokyo Univ Social Welf, Dept Educ, Sannoncho 2020-1, Isesaki City, Gunma 3720831, Japan