A note on Chebyshev's 'other' inequality

被引:0
|
作者
Canavati, JA [1 ]
Galaz-Fontes, F [1 ]
机构
[1] Ctr Invest Matemat, Guanajuato 36000, Mexico
来源
关键词
Chebyshev inequality; topological group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we show that Chebyshev's inequality integral(a)(b) d mu integral(a)(b) f(x)g(x) d mu greater than or equal to integral(a)(b) f(x) d mu integral(a)(b) g(x) d mu, can be generalized into several different contexts, by means of elementary measure theoretical arguments.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
  • [21] A note on Weyl's inequality
    Fisk, S
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (03): : 257 - 258
  • [22] A note on Young's inequality
    Dragomir, S. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) : 349 - 354
  • [23] Note on Wielandt's inequality
    Yeh, L.
    Applied Mathematics Letters, 1995, 8 (03):
  • [24] Three economic applications of Chebyshev's algebraic inequality
    Simonovits, A
    MATHEMATICAL SOCIAL SCIENCES, 1995, 30 (03) : 207 - 220
  • [25] A note on Fisher's inequality
    Woodall, DR
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (01) : 171 - 176
  • [26] A note on Hilbert's inequality
    He, LP
    Gao, MZ
    Wei, SR
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (02): : 283 - 288
  • [27] A note on Young’s inequality
    S. S. Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 349 - 354
  • [28] A note on Hilbert's inequality
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (2-3) : 589 - 593
  • [29] A note on Hilbert's inequality
    Xiaojing, Yang
    Applied Mathematics and Computation (New York), 2003, 137 (2-3): : 589 - 593
  • [30] A note on Ostrowski's inequality
    Sikic, H
    Sikic, T
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (02): : 297 - 299