A 1 cm x 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array

被引:10
|
作者
Clark, WR [1 ]
Davis, A
Roland, M
Vaccaro, K
机构
[1] OptoGration Inc, Haverhill, MA 01835 USA
[2] Solid State Sci Corp, Hollis, NH 03049 USA
[3] USAF, Res Lab, Sensors Directorate, Hanscom AFB, MA 01731 USA
关键词
avalanche multiplication; avalanche photodiode (APD); infrared detector; photodetector; photodiode; photodiode array;
D O I
10.1109/LPT.2005.860032
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a 1 cm x 1 cm array of 100 In0.53Ga0.47As-In0.52Al0.48As avalanche photodiodes (APD). The average breakdown voltage was 28.7 V with a standard deviation of less than 0.5 V The distribution of breakdown voltage across the area followed a radial pattern consistent with a slight epitaxial growth nonuniformity. The mean dark current at a gain of 10, or 6.1 A/W, was 10.3 nA, and none of the 100 AM had a dark current of more than 25 nA. The bandwidth at a gain of 10 was 6.2 GHz, and the maximum gain-bandwidth product was 140 GHz. This technology is ideally suited for next-generation three-dimensional imaging applications.
引用
收藏
页码:19 / 21
页数:3
相关论文
共 50 条
  • [31] X-ray Analysis of Multilayer In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT Heterostructures with InAs Nanoinsert in Quantum Well
    Blagov, A. E.
    Galiev, G. B.
    Imamov, R. M.
    Klimov, E. A.
    Kondratev, O. A.
    Pisarevskii, Yu. V.
    Prosekov, P. A.
    Pushkarev, S. S.
    Seregin, A. Yu.
    Koval'chuk, M. V.
    CRYSTALLOGRAPHY REPORTS, 2017, 62 (03) : 355 - 363
  • [32] Metamorphic In0.53Ga0.47As/In0.52Al0.48As tunnel diodes grown on GaAs
    Lewis, JH
    Pitts, B
    Deshpande, MR
    El-Zein, N
    2001 IEEE INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS, 2000, : 143 - 148
  • [33] HIGH-QUALITY IN0.53GA0.47AS SCHOTTKY DIODE FORMED BY GRADED SUPERLATTICE OF IN0.53GA0.47AS/IN0.52AL0.48AS
    LEE, DH
    LI, SS
    SAUER, NJ
    CHANG, TY
    APPLIED PHYSICS LETTERS, 1989, 54 (19) : 1863 - 1865
  • [34] In0.53Ga0.47As/In0.52Al0.48AsSACM APDs for single photon detection
    Karve, G
    Zheng, X
    Holmes, AL
    Campbell, JC
    Kinsey, GS
    Boisvert, JC
    Isshiki, TD
    Sudharsanan, R
    Bethune, DS
    Risk, WP
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 769 - 770
  • [35] Mechanisms for implantation induced interdiffusion at In0.53Ga0.47As/In0.52Al0.48As heterointerfaces
    Kimura, T
    Saito, M
    Tachi, S
    Saito, R
    Murata, M
    Kamiya, T
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 44 (1-3): : 28 - 32
  • [36] INTERDIFFUSION PHENOMENA IN IN0.53GA0.47AS/IN0.52AL0.48AS HETEROSTRUCTURES AND QUANTUM WELLS
    BAIRD, RJ
    POTTER, TJ
    LAI, R
    BHATTACHARYA, PK
    KOTHIYAL, GP
    JOURNAL OF ELECTRONIC MATERIALS, 1988, 17 (04) : S15 - S15
  • [37] X-ray analysis of multilayer In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures with InAs nanoinsert in quantum well
    A. E. Blagov
    G. B. Galiev
    R. M. Imamov
    E. A. Klimov
    O. A. Kondratev
    Yu. V. Pisarevskii
    P. A. Prosekov
    S. S. Pushkarev
    A. Yu. Seregin
    M. V. Koval’chuk
    Crystallography Reports, 2017, 62 : 355 - 363
  • [38] Enhancement of Electron Mobility and Photoconductivity in Quantum Well In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As on InP Substrate
    Kulbachinskii, V. A.
    Lunin, R. A.
    Yuzeeva, N. A.
    Galiev, G. B.
    Vasilievskii, I. S.
    Klimov, E. A.
    ACTA PHYSICA POLONICA A, 2013, 123 (02) : 345 - 348
  • [39] Structural Control of Rashba Spin–Orbit Coupling in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As Quantum Wells
    T. Koga
    J. Nitta
    S. Marcet
    Journal of Superconductivity, 2003, 16 : 331 - 334
  • [40] Electron Mobility and Persistent Photoconductivity in Quantum Wells In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As on InP Substrate
    Kulbachinskii, Vladimir A.
    Lunin, Roman A.
    Yuzeeva, Natalia A.
    Galiev, Galib B.
    Vasilievskii, Ivan S.
    Klimov, Eugene A.
    ADVANCES IN NANODEVICES AND NANOFABRICATION, 2012, : 273 - 282