Stabilization of the Quantum Spin Hall Effect by Designed Removal of Time-Reversal Symmetry of Edge States

被引:44
|
作者
Li, Huichao [1 ,2 ]
Sheng, L. [1 ,2 ]
Shen, R. [1 ,2 ]
Shao, L. B. [1 ,2 ]
Wang, Baigeng [1 ,2 ]
Sheng, D. N. [3 ]
Xing, D. Y. [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
[4] Nanjing Univ, Natl Ctr Microstruct & Quantum Manipulat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SINGLE DIRAC CONE; TOPOLOGICAL-INSULATOR; REALIZATION;
D O I
10.1103/PhysRevLett.110.266802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the ferromagnetic region and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different "lanes," the QSH effect becomes robust against symmetry-breaking perturbations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Interplay of quantum spin Hall effect and spontaneous time-reversal symmetry breaking in electron-hole bilayers. I. Transport properties
    Paul, Tania
    Becerra, V. Fernandez
    Hyart, Timo
    PHYSICAL REVIEW B, 2022, 106 (23)
  • [42] Time-reversal symmetry and fluctuation relations in non-equilibrium quantum steady states
    Bernard, Denis
    Doyon, Benjamin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (37)
  • [43] Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
    Read, N
    Green, D
    PHYSICAL REVIEW B, 2000, 61 (15): : 10267 - 10297
  • [44] Spin polarization of the quantum spin Hall edge states
    Christoph Brüne
    Andreas Roth
    Hartmut Buhmann
    Ewelina M. Hankiewicz
    Laurens W. Molenkamp
    Joseph Maciejko
    Xiao-Liang Qi
    Shou-Cheng Zhang
    Nature Physics, 2012, 8 (6) : 485 - 490
  • [45] Spin polarization of the quantum spin Hall edge states
    Bruene, Christoph
    Roth, Andreas
    Buhmann, Hartmut
    Hankiewicz, Ewelina M.
    Molenkamp, Laurens W.
    Maciejko, Joseph
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    NATURE PHYSICS, 2012, 8 (06) : 485 - 490
  • [46] Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
    Ma, Eric Yue
    Calvo, M. Reyes
    Wang, Jing
    Lian, Biao
    Muehlbauer, Mathias
    Bruene, Christoph
    Cui, Yong-Tao
    Lai, Keji
    Kundhikanjana, Worasom
    Yang, Yongliang
    Baenninger, Matthias
    Koenig, Markus
    Ames, Christopher
    Buhmann, Hartmut
    Leubner, Philipp
    Molenkamp, Laurens W.
    Zhang, Shou-Cheng
    Goldhaber-Gordon, David
    Kelly, Michael A.
    Shen, Zhi-Xun
    NATURE COMMUNICATIONS, 2015, 6
  • [47] Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
    Eric Yue Ma
    M. Reyes Calvo
    Jing Wang
    Biao Lian
    Mathias Mühlbauer
    Christoph Brüne
    Yong-Tao Cui
    Keji Lai
    Worasom Kundhikanjana
    Yongliang Yang
    Matthias Baenninger
    Markus König
    Christopher Ames
    Hartmut Buhmann
    Philipp Leubner
    Laurens W. Molenkamp
    Shou-Cheng Zhang
    David Goldhaber-Gordon
    Michael A. Kelly
    Zhi-Xun Shen
    Nature Communications, 6
  • [48] Time-reversal symmetry breaking at the edge states of a three-dimensional topological band insulator
    Xu, Cenke
    PHYSICAL REVIEW B, 2010, 81 (02)
  • [49] Quantum pump in quantum spin Hall edge states
    Cheng, Fang
    SOLID STATE COMMUNICATIONS, 2016, 242 : 16 - 20
  • [50] Spontaneous thermal Hall conductance in superconductors with broken time-reversal symmetry
    Yilmaz, F.
    Yip, S. K.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):